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Chapter 1

Introduction

Before you lies a thesis about convex optimization. In optimization, we aim to find
the “best” solution out of a set of options. Such tasks are often described by an
objective as well as a number of constraints that must be satisfied. Examples include
computing an efficient train schedule, digitally stabilizing video, or routing trucks to
deliver goods at minimal cost.

Convex optimization deals with optimization problems whose set of feasible
solutions is convex and whose objective is to minimize a convex function. The set of
feasible solutions is convex when, if 𝑥, 𝑦 ∈ R𝑛 are solutions that satisfy all constraints
and 0 ≤ 𝑡 ≤ 1 then 𝑡𝑥 + (1− 𝑡)𝑦 also satisfies all constraints. An objective function 𝑓
is convex if for 𝑥, 𝑦 ∈ R𝑛 and 0 ≤ 𝑡 ≤ 1 we have 𝑓 (𝑡𝑥+ (1− 𝑡)𝑦) ≤ 𝑡 𝑓 (𝑥) + (1− 𝑡) 𝑓 (𝑦).
Convex optimization captures a large class of natural problems and has a number of
useful mathematical and computational properties.

In this thesis, we will focus on two classical convex optimization problems and
study algorithms to solve them. The first is linear programming: the task of maximiz-
ing a linear function over a set of points described by linear inequalities. Chapters
2, 3, and 4 are all about questions that arise from the theory of linear programming
and two popular algorithms for solving them. In Chapter 5 we shift our attention to
the more general problem of minimizing a convex function when given access to a
separation oracle for the set of feasible solutions. This introduction describes the
new results of this thesis with a minimal number of references. Detailed background,
history and discussion of prior work can be found in the individual chapters.

1.1 Linear Programming

In the first part of this thesis, the topic of interest will be one of the most basic opti-
mization problems: linear programming. A linear program (LP) is any optimization
problem that can be written in the following form:

maximize 𝑐T𝑥

subject to 𝐴𝑥 ≤ 𝑏.
(LP)
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2 1. Introduction

Here, the program data is known and consists of the matrix 𝐴 ∈ R𝑚×𝑛 and the vectors
𝑏 ∈ R𝑚, 𝑐 ∈ R𝑛. Our task is first to determine if there exists a feasible solution, i.e.,
a vector 𝑥 ∈ R𝑛 that satisfies all 𝑚 linear inequalities. If this is the case, we need to
find either such a feasible vector with maximal possible objective value or an infinite
ray of feasible points that demonstrate the fact that no such maximizing point exists.
Linear programs can model a large variety of optimization problems, and as such have
been extensively used and studied in practice and in theory. There is a rich theory
about linear programming, which can be found in various textbooks. An accessible
introduction can be found in [137].

Among practical software available for solving general purpose linear programs,
the key algorithms can be divided into two categories. The first category is that of
simplex methods, which are the subject of Chapters 2 and 3. The second category is
that of interior point methods, which are the subject of Chapter 4. We should note
here that practical software typically uses floating-point arithmetic, while this thesis
will use the real model of computation.

1.2 The Simplex Method

The simplex method is the oldest algorithm for linear programming, having been
invented by Dantzig in 1947. The algorithm maintains a basis, a set 𝐵 ⊆ [𝑚] :=
{1, . . . , 𝑚} of rows such that 𝐴𝐵 is invertible, such that 𝑥𝐵 = 𝐴−1

𝐵 𝑏𝐵 is feasible for
the linear program (LP). Here, the subscript means we restrict to the rows indexed
by 𝐵. In every iteration of its main loop, it will replace one element of the basis
𝐵 for another element of [𝑚] such that the new point 𝑥𝐵 has better objective value.
This repeats until a point with optimal objective value has been found. Geometrically,
we can view this algorithm as navigating from vertex to vertex along the edges of
the polyhedron of feasible points. One such path on a polyhedron is depicted in
Figure 1.1.

Since a vertex can have neighbouring vertices, the simplex method needs a way
to choose which basis element will be swapped out. Rules for making these choices
are called pivot rules, and many different rules have been studied. A classic example
is Dantzig’s most negative reduced cost rule, which chooses the outgoing edge which
maximizes the objective gain per unit of slack, the amount by which the constraint
𝐴T
𝑖 𝑥 ≤ 𝑏𝑖 to be swapped out of the basis is no longer tight after the pivot step.

Another well-known example is the steepest edge rule, as well as its approximate
cousin, Harris’ Devex rule, which chooses the edge whose angle to the objective is
minimized.
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Figure 1.1: A simplex path on a convex polyhedron.

1.2.1 Analyzing the Simplex Method

The simplex method is implemented in most software packages for linear program-
ming since it is very fast in practice. One aspect that contributes to its speed is that
the simplex method typically visits only a small number of bases, and hence its main
loop requires few iterations. To better understand why so few bases are visited, we
want a theoretical analysis that supports this observation.

A major obstacle is that there are specially constructed inputs to the simplex
method on which it visits at least a subexponentially large number of vertices of
the feasible polyhedron. That means that the simplex method is slow in the worst
case. Such worst-case inputs depend on the pivot rule, but are known for every major
pivot rule that has been studied [6, 9, 72, 81, 85, 86, 94, 98, 113, 125, 125, 149]. As
theoreticians, our task is thus to explain why difficult inputs do not appear in practice.
This is the subject of Chapter 2. We study the performance of a simplex method
under small perturbations of the input data by bounding the expected number of
bases visited if a small amount of random noise is added to the description of the LP.
The study of algorithms’ performance under small perturbations is called smoothed
analysis and was introduced by Spielman and Teng [179]. The simplex method is
provably fast in expectation after the input has been perturbed. This is considered to
imply that difficult inputs are very fragile, explaining why inputs from practice are
relatively easy. In Chapter 2, we give the best known upper bound on the smoothed
complexity of the simplex method, as summarized in the following theorem.

Theorem A (Theorem 2.5.12). There exists an explicit simplex method such that the
following holds. Assume that 𝑚 ≥ 𝑛 ≥ 3 and that the entries of 𝐴 ∈ R𝑚×𝑛 and
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Figure 1.2: The convex hull of points 𝑎1, . . . , 𝑎6 is intersected with a two-dimensional
plane. The polygon at the intersection is marked in red.

𝑏 ∈ R𝑚 are independent Gaussian distributed random variables with variance 𝜎2.
If the rows of the expected matrix E[(𝐴, 𝑏)] ∈ R𝑚×(𝑛+1) each have norm at most 1,
then this algorithm solves (LP) using 𝑂 (𝑛2√log𝑚 𝜎−2 + 𝑛3 log(𝑚)3/2) pivot steps in
expectation.

The chapter is based on [50] and [51] and is an extension of my master’s the-
sis [109], which proved a complexity bound of𝑂 (𝑛2√log𝑚 𝜎−2+𝑛5 log(𝑚)3/2). The
improved additive term is the result of a new algorithm which we call the symmetric
random vertex algorithm. The analysis of the symmetric random vertex algorithm is
based on the following key geometric estimate which is illustrated in Figure 1.2:

Theorem B (Theorem 2.4.1). Let 𝑊 ⊆ R𝑛 be a fixed two-dimensional subspace,
𝑚 ≥ 𝑛 ≥ 3 and let 𝐴 ∈ R𝑚×𝑛 be a matrix with rows 𝑎1, . . . , 𝑎𝑚 ∈ R𝑛, such that
the entries of 𝐴 are independent Gaussian random variables with variance 𝜎2 and
such that ‖E[𝑎𝑖]‖ ≤ 1 for every 𝑖 ∈ [𝑚]. Letting 𝑄(𝐴) := conv(𝑎1, . . . , 𝑎𝑚) denote
the convex hull of the row vectors, we find that the expected number of edges of the
polygon 𝑄(𝐴) ∩𝑊 is bounded as follows:

E[|edges(𝑄(𝐴) ∩𝑊) |] ≤ 𝑂 (𝑛2√log𝑚 𝜎−2 + 𝑛2.5 log𝑚 𝜎−1 + 𝑛2.5 log(𝑚)3/2).

The above theorem is the main result in [109]. Bounding the complexity of the
symmetric random vertex algorithm requires this same upper bound to hold when the
rows 𝑎1, . . . , 𝑎𝑚 ∈ R𝑛 can be correlated in a limited way. For the sake of readability,
we include the proof of Theorem 2.4.1 verbatim in Section 2.4 and point out the
necessary minor adaptations in Section 2.5.

The same techniques used to prove the geometric estimate can be used to study a
simpler question as well. Specifically, we study the expected number of vertices of a
random polygon, where this polygon is the convex hull of points 𝑎1, . . . , 𝑎𝑚 ∈ R2 that
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are all independently Gaussian distributed with standard deviation 𝜎 and satisfying
‖E[𝑎𝑖] ‖ ≤ 1 for each 𝑖 ∈ [𝑚]. While the convex hull of 𝑚 fixed points can have up
to 𝑚 vertices, we prove that the convex hull of our random points will have at most
𝑂 (𝜎−1 +

√
log𝑚) points in expectation.

Theorem C (Theorem 2.3.1). For independently distributed points 𝑎1, . . . 𝑎𝑚 ∈ R2,
each with independent Gaussian distributed entries of variance 𝜎2 and ‖E[𝑎𝑖]‖ ≤ 1
for all 𝑖 ∈ [𝑚], the convex hull conv(𝑎1, . . . , 𝑎𝑚) has 𝑂 (𝜎−1 +

√
log𝑚) edges in

expectation.

This result is based on [51] and did not appear in [109]. Its proof can be found in
Section 2.3 and can serve as a warm-up for the section following it. On a high level,
the two-dimensional bound arises from the fact that every edge has length Ω(𝜎) in
expectation, while the total perimeter is𝑂 (1+𝜎

√
log𝑚) in expectation. With a small

trick, we can divide these two bounds to prove Theorem 2.3.1.

1.2.2 Diameter Bounds

So far we have thought about the lengths of paths from vertex to vertex on polyhedra
generated according to the shadow vertex pivot rule. In Chapter 3, we set our eyes on a
quantity that is more difficult to analyze: the shortest paths between vertices. Given a
polyhedron, the smallest number 𝑘 such that any two vertices are connected by a path
of at most 𝑘 edges is called the (combinatorial) diameter. The diameter of the cube
in R3 for example is equal to 3, as illustrated in Figure 1.3. The polynomial Hirsch
conjecture posits that any polyhedron in R𝑛 with 𝑚 facets can have combinatorial
diameter at most a polynomial in 𝑛 and 𝑚. This conjecture remains wide open to this
day.

In Chapter 3, we study the combinatorial diameter for random polyhedra and
prove high-probability upper and lower bounds. Specifically, we sample a matrix 𝐴
whose rows come from a Poisson point process on the unit sphere and consider the
convex hull 𝑄(𝐴) of the rows as well as the polyhedron 𝑃(𝐴) = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ ®1}.
Assuming that we expect 𝐴 to have more than 2Ω(𝑛) rows, we find upper and lower
bounds on the diameter of 𝑄(𝐴) and 𝑃(𝐴) with high probability. Chapter 3 is based
on [25] and proves the following result:

Theorem D. Suppose that 𝑛, 𝑚 ∈ N satisfy 𝑛 ≥ 2 and 𝑚 ≥ 2Ω(𝑛) . Sample a matrix
𝐴T := (𝑎1, . . . , 𝑎𝑀 ) ∈ R𝑛×𝑀 , where 𝑀 is Poisson distributed with E[𝑀] = 𝑚,
and 𝑎1, . . . , 𝑎𝑀 are sampled independently and uniformly from S𝑛−1. Then, with
probability at least 1 − 𝑚−𝑛, we have that

Ω(𝑛𝑚 1
𝑛−1 ) ≤ diameter(𝑃(𝐴)) ≤ 𝑂 (𝑛2𝑚

1
𝑛−1 + 𝑛54𝑛).

Ω(𝑚 1
𝑛−1 ) ≤ diameter(𝑄(𝐴)) ≤ 𝑂 (𝑛𝑚 1

𝑛−1 + 𝑛44𝑛).
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Figure 1.3: Any two vertices of the three-dimensional cube are connected by a path
consisting of at most 3 edges.

The bounds we find are polynomial in 𝑚. The upper bound contains an additive
term that is exponential in 𝑛, but this term does not depend on 𝑚. Compared to the
worst-case diameter bound of 2𝑛−3𝑚 for a polyhedron 𝑃(𝐴) with 𝑚 linear constraints,
we find that our upper bound improves over this worst-case bound upper only when
𝑚 ≥ Ω(𝑛52𝑛). In the regime when 𝑚 ≥ 2Ω(𝑛2) , our upper and lower bounds are tight
to within a factor 𝑛. Moreover, up to a constant factor the upper bound for 𝑃(𝐴) is
equal to the length of an average shadow vertex method path induced by two random
objective functions. This means that improving the upper bound would require using
a different pivot rule to construct paths.

1.3 Interior Point Methods

Interior point methods are the other popular category of algorithms for solving linear
programs. For these, the algorithm maintains a point inside the relative interior of the
feasible set, and follows a curve inside the relative interior to find an optimal solution
of the linear program.

In this section and in Chapter 4, we consider linear programs that are written in
the following standard form:

maximize 𝑐T𝑥

subject to 𝐴𝑥 = 𝑏,

𝑥 ≥ ®0.
(LP’)
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Assuming we are given a suitable interior point to start from, a standard interior
point method can find an exact solution to (LP’) in 𝑂 (√𝑛 · 𝐿𝐴,𝑏,𝑐) iterations, each
iteration taking time polynomial in 𝑛 and 𝑚 [201]. Here, 𝐿𝐴,𝑏,𝑐 denotes the bit
description length of the input data, assuming that 𝐴 ∈ Q𝑚×𝑛, 𝑏 ∈ Q𝑚, 𝑐 ∈ Q𝑛. After
obtaining the initial point, e.g., through constructing an extended LP, these algorithms
are scaling-invariant. To explain this term, let 𝐷 ∈ R𝑛×𝑛 be a diagonal matrix with
strictly positive entries on the diagonal. Then we can consider the linear program

maximize 𝑐T𝐷𝑥

subject to 𝐴𝐷𝑥 = 𝑏,

𝑥 ≥ ®0.

We consider this alternative linear program to be equivalent under a diagonal rescaling,
because its set of feasible solutions can be obtained by applying the linear transforma-
tion 𝐷−1 to the solutions of the first linear program. We say an interior point method is
scaling invariant if, when applying it to these two equivalent linear programs starting
at appropriate interior points 𝑥0 and 𝐷−1𝑥0, the internally maintained interior points
are related by this same linear transformation.

In a separate line of research, people have found interior point methods whose
iteration count depends only on 𝑛 and 𝐿𝐴, the bit-complexity of the constraint ma-
trix [129, 146, 147, 198]. So far, these algorithms have not been scaling-invariant,
and whether a scaling-invariant algorithm could exist was an open question posed in
[146].

Based on [52], Chapter 4 describes an interior point method that fills this gap,
for it is both scaling invariant and has running time depending on 𝑛, 𝑚 and 𝐿𝐴. This
resolves the open question from [146] in the affirmative.

Theorem E (Theorem 4.3.16). There exists a scaling-invariant interior point method
that finds an optimal solution to (LP’) in

𝑂 (𝑛2.5 log(𝑛) log( �̄�𝐴 + 𝑛))

iterations, each iteration taking time polynomial in 𝑚 and 𝑛.

In the above theorem statement, �̄�𝐴 is a condition number of the matrix 𝐴 that
equals

�̄�𝐴 = max{‖𝐵−1𝐴‖ : 𝐵 non-singular 𝑚 × 𝑚-submatrix of 𝐴}

and was already used in the context of interior point methods in [198]. The above
theorem holds in the real model of computation where 𝐴, 𝑏, 𝑐 have entries inR. When
𝐴 ∈ Q𝑚×𝑛, a classic result states that �̄�𝐴 ≤ 2𝑂 (𝐿𝐴) , where 𝐿𝐴 is the bit-complexity
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of the matrix 𝐴. Moreover, if 𝐴 is totally unimodular (every square non-singular
submatrix has determinant 0, 1, or −1) then �̄�𝐴 ≤ 𝑛.

Since the algorithm is scaling-invariant, the bound can trivially be strengthened to
𝑂 (𝑛2.5 log(𝑛) log( �̄�∗𝐴 + 𝑛)), where �̄�∗𝐴 := inf𝐷 �̄�𝐴𝐷 is the infimum condition number
over all strictly positive diagonal matrices 𝐷. The chapter also describes the first
algorithm that can approximate �̄�𝐴 and can compute a diagonal matrix 𝐷 such that
�̄�𝐴𝐷 is approximately equal to the infimum value �̄�∗𝐴.

Theorem F (Theorem 4.2.5). There is an 𝑂 (𝑛2𝑚2 + 𝑛3) time algorithm that for any
matrix 𝐴 ∈ R𝑚×𝑛 computes an estimate 𝑡 of �̄�𝐴 such that

𝑡 ≤ �̄�𝐴 ≤ 𝑛( �̄�∗𝐴)2𝑡

and a strictly positive diagonal matrix 𝐷 such that

�̄�∗𝐴 ≤ �̄�𝐴𝐷 ≤ 𝑛( �̄�∗𝐴)3 .

In contrast to the above approximation result, it is known to be NP-hard to
approximate �̄�𝐴 to within a factor 2poly(rank(𝐴)) , see [188].

1.4 The Separation Oracle Model

In the last chapter we look beyond linear programming and consider convex optimiza-
tion in the oracle model. Suppose there is some convex compact set 𝐾 ⊆ R𝑛 and
that we know 𝑅 ≥ 𝑟 > 0 such that such that 𝐾 contains some ball of radius 𝑟 as a
subset and such that 𝐾 is contained inside the ball of radius 𝑅 centered at the origin.
Furthermore, we assume there is an 𝐿-Lipschitz convex function 𝑓 with known 𝐿 > 0.
Our goal is to approximately minimize 𝑓 (𝑥) over 𝑥 ∈ 𝐾 when given access to suitable
oracles for 𝐾 and 𝑓 . That means that 𝐾 and 𝑓 are not known in advance. Instead, we
can make queries about 𝐾 and 𝑓 which will be answered.

For 𝐾 , we have access to a separation oracle. This means that we can query any
point 𝑥 ∈ R𝑛 and receive either the answer “𝑥 ∈ 𝐾” or we receive some 𝑎 ∈ R𝑛, 𝑏 ∈ R
such that 〈𝑎, 𝑥〉 > 𝑏 and such that 〈𝑎, 𝑦〉 ≤ 𝑏 for every 𝑦 ∈ 𝐾 . In the latter case,
the inequality defines a hyperplane that separates the queried point from the set 𝐾 ,
providing a “reason” or certificate for why 𝑥 ∉ 𝐾 . For 𝑓 , we have access to a first-
order oracle. We can query any point 𝑥 ∈ R𝑛 and receive the value 𝑓 (𝑥) and a
(sub)gradient ∇ 𝑓 (𝑥).

Convex optimization in the separation oracle model is a fundamental topic in
optimization, see, e.g., [103]. The model is quite general and covers a large variety
of problems, including problems where linear programming formulations are known
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Figure 1.4: Progression of the upper (primal) and lower (dual) bounds of the different
cutting plane algorithms for a maximum-cardinality matching problem consisting of
a graph with 500 vertices and 60 randomly planted triangles.

but too large to write out explicitly, e.g., the minimum cost matching problem on
general graphs.

One famous algorithm to solve convex optimization problems in the separation
oracle model is called the ellipsoid method. It maintains an ellipsoid in R𝑛 that
contains the optimal solutions, and after querying a point from the interior of the
ellipsoid, the algorithm will be able to find a new ellipsoid with smaller volume. The
ellipsoid method will identify a point 𝑥 ∈ 𝐾 satisfying 𝑓 (𝑥) ≤ min𝑧∈𝐾 𝑓 (𝑧) + 𝜀
after 𝑂 (𝑛2 log(𝐿𝑅/(𝜀𝑟))) queries to the oracles. This complexity depends only
logarithmically on 𝐿, 𝑅, 𝑟 and 𝜀, but at the expense of the number of queries growing
with the dimension 𝑛. The ellipsoid method is, generally speaking, too slow for most
practical applications.

One popular approach to optimization in this model is the linear programming
based cutting plane method. It maintains an LP consisting of all known constraints
on the optimal solutions and queries an optimal solution to this linear program. If the
queried point is not feasible or optimal, the newly obtained constraint is added to the
linear program and the method repeats. This cutting plane method is often practical
but does not have any theoretical guarantees on its convergence rate.

In Chapter 5 we introduce a new algorithm that both has a convergence guarantee
and is competitive in experiments. The convergence guarantee is as follows:
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Theorem G (Theorem 5.2.6). There exists an explicit algorithm which, given a
separation oracle A for a convex body 𝐾 ⊆ R𝑛 satisfying 𝑧 + 𝑟B𝑛2 ⊆ 𝐾 ⊆ 𝑅B

𝑛
2 and

a first-order oracle for an 𝐿-Lipschitz convex function 𝑓 : R𝑛 → R, finds a feasible
solution 𝑦 ∈ 𝐾 with 𝑓 (𝑦) ≥ min𝑥∈𝐾 𝑓 (𝑥) ≥ 𝑓 (𝑦) − 𝜀 after

𝑂

(
𝑅2

𝑟2 ·
𝑅2𝐿2

𝜀2

)
oracle queries.

This convergence rate depends polynomially on the problem parameters, but
without a dependence on the dimension 𝑛 of the problem.

We experimentally compare our algorithm to both methods named above as well
as an analytic center cutting plane method. Comparing these algorithms on a testbed
of combinatorial, semidefinite and machine learning problems, we find our algorithm
to be competitive in terms of number of oracle queries. Figure 1.4 is a comparison
of the algorithms on one of our combinatorial instances. The figure depicts for each
algorithm the best lower (primal) and upper (dual) bound on the size of a maximum
matching in a random graph. The vertical axis is scaled as a fraction of the gap
closed between the optimal value and the initial bound, and the horizontal axis
measures the number of oracle queries that have been made by the algorithms. Here,
’cutloop’ denotes the LP-based cutting plane method, which only produces upper
bounds, ’ellipsoid’ denotes the ellipsoid method, ’analytic’ stands for the analytic
center cutting plane method and ’our’ is the algorithm described in Chapter 5.

1.5 Notation

Here we define notation and basic concepts that will see use throughout this thesis.
Individual chapters may have their own section for notation as well.

• For functions 𝑓 , 𝑔 : R→ R we write

– 𝑓 (𝑥) = 𝑂 (𝑔(𝑥)) if there exist 𝐶 > 0 and 𝑥0 ∈ R such that 𝑓 (𝑥) ≤ 𝐶𝑔(𝑥)
for every 𝑥 ≥ 𝑥0 in the domain of both functions,

– 𝑓 (𝑥) = Ω(𝑔(𝑥)) if there exist 𝐶 > 0 and 𝑥0 ∈ R such that 𝑓 (𝑥) ≥ 𝐶𝑔(𝑥)
for every 𝑥 ≥ 𝑥0 in the domain of both functions,

– 𝑓 (𝑥) = Θ(𝑔(𝑥)) if both 𝑓 (𝑥) = 𝑂 (𝑔(𝑥)) and 𝑔(𝑥) = Ω(𝑔(𝑥))
– 𝑓 (𝑥) = �̃� (𝑔(𝑥)) if there exists 𝑐 > 0 such that 𝑓 (𝑥) = 𝑂 (𝑔(𝑥)log(𝑔(𝑥))𝑐).
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• Vector inequalities are defined coordinate-wise: 𝑣 ≤ 𝑤 if and only if 𝑣𝑖 ≤ 𝑤𝑖
for all 𝑖 ≤ 𝑛.

• We abbreviate [𝑚] := {1, . . . , 𝑚} and
( [𝑚]
𝑛

)
= {𝐼 ⊆ [𝑚] | |𝐼 | = 𝑛}.

• for a set 𝐾 ⊆ R𝑛 and a scalar 𝑡, we write 𝑡𝐾 := {𝑡𝑥 : 𝑥 ∈ 𝐾}.

• For 𝑎, 𝑏 ∈ R we have intervals [𝑎, 𝑏] = {𝑟 ∈ R : 𝑎 ≤ 𝑟 ≤ 𝑏} and (𝑎, 𝑏) = {𝑟 ∈
R : 𝑎 < 𝑟 < 𝑏}.

• For 𝑥 > 0, we define log 𝑥 to be the logarithm base 𝑒 of 𝑥.

• For a set 𝐴, we use the notation 1[𝑥 ∈ 𝐴] to denote the indicator function of
𝐴, i.e., 1[𝑥 ∈ 𝐴] = 1 if 𝑥 ∈ 𝐴 and 0 otherwise.

• Depending on the context, the inner product of 𝑥 and 𝑦 is written with the
notation 𝑥T𝑦 = 〈𝑥, 𝑦〉 = ∑𝑛

𝑖=1 𝑥𝑖𝑦𝑖 . We use the ℓ2-norm ‖𝑥‖2 =
√
𝑥T𝑥 and the

ℓ1-norm ‖𝑥‖1 =
∑𝑛
𝑖=1 |𝑥𝑖 |. Any norm without subscript is the ℓ2-norm.

• The standard basis of R𝑛 consists of the vectors 𝑒𝑖 = (0, . . . , 0, 1, 0, . . . , 0), 𝑖 ∈
[𝑛] with the only non-zero entry being 1 on the 𝑖th location. The all-ones vector
is ®1 and the all-zeroes vector is ®0

• The unit sphere in R𝑛 is denoted by S𝑛−1 = {𝑥 ∈ R𝑛 : ‖𝑥‖ = 1} and the unit
ball is B𝑛2 = {𝑥 ∈ R𝑛 : ‖𝑥‖ ≤ 1}.

• We letR++ denote the set of strictly positive reals, andR+ the set of nonnegative
reals.

• A set 𝑉 + 𝑝 is an affine subspace if 𝑉 ⊆ R𝑛 is a linear subspace. We say its
dimension dim(𝑉 + 𝑝) equals dim(𝑉), the dimension of 𝑉 as a vector space.

• If 𝑆 ⊆ R𝑛 then the affine hull aff (𝑆) is the smallest affine subspace containing
𝑆. We say dim(𝑆) = 𝑘 if dim(aff (𝑆)) = 𝑘 .

• For any linear or affine subspace 𝑉 ⊆ R𝑛 the orthogonal projection onto 𝑉 is
denoted by 𝜋𝑉 .

• When 𝑉 ⊆ R𝑛 is a linear subspace, its orthogonal complement is denoted
𝑉⊥ = {𝑥 ∈ R𝑛 : 𝑣T𝑥 = 0, ∀ 𝑣 ∈ 𝑉}. For 𝑣 ∈ R𝑛 we shorten 𝑣⊥ := span(𝑣)⊥.

• We write vol𝑘 (𝑆) for the 𝑘-dimensional volume of 𝑆.

• For 𝐴, 𝐵 ⊆ R𝑛 we write the Minkowski sum 𝐴 + 𝐵 = {𝑎 + 𝑏 : 𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵}.
For a vector 𝑣 ∈ R𝑛 we write 𝐴 + 𝑣 = 𝐴 + {𝑣}. For a set of scalars 𝑆 ⊆ R we
write 𝑣 · 𝑆 = {𝑠𝑣 : 𝑠 ∈ 𝑆}.
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• We say vectors 𝑎1, . . . , 𝑎𝑘 in R𝑛 are affinely independent if there is no (𝑘 −
2)-dimensional affine subspace containing all of 𝑎1, . . . , 𝑎𝑘 . Algebraically,
𝑎1, . . . , 𝑎𝑘 are affinely independent if the system ∑

𝑖≤𝑘 𝜆𝑖𝑎𝑖 = ®0,
∑
𝑖≤𝑘 𝜆𝑖 = 0

has no non-trivial solution.

• For 𝐴 ∈ R𝑚×𝑛 a matrix and 𝐵 ⊆ [𝑚] we write 𝐴𝐵 ∈ R |𝐵 |×𝑛 for the submatrix
of 𝐴 consisting of the rows indexed in 𝐵, and for 𝑏 ∈ R𝑚 we write 𝑏𝐵 for the
restriction of 𝑏 to the coordinates indexed in 𝐵.

• For a set 𝑋 and function 𝑓 : 𝑋 → R, we write arg min{ 𝑓 (𝑥) : 𝑥 ∈ 𝑋} to denote
an arbitrary but fixed 𝑥∗ ∈ 𝑋 such that 𝑓 (𝑥∗) = min𝑥∈𝑋 𝑓 (𝑥).

Convexity A set 𝑆 ⊆ R𝑛 is convex if for all points 𝑥, 𝑦 ∈ 𝑆 and 𝜆 ∈ [0, 1] we have
𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝑆. We write conv(𝑆) to denote the convex hull of 𝑆, which is the
intersection of all convex sets 𝑇 ⊃ 𝑆. In an 𝑛-dimensional vector space, the convex
hull equals

conv(𝑆) = {
𝑛+1∑
𝑖=1

𝜆𝑖𝑠𝑖 : 𝜆1, . . . , 𝜆𝑛+1 ≥ 0,
𝑛+1∑
𝑖=1

𝜆𝑖 = 1, 𝑠1, . . . , 𝑠𝑛+1 ∈ 𝑆}.

For 𝑥, 𝑦 ∈ R𝑛 the line segment between 𝑥 and 𝑦 is [𝑥, 𝑦] = conv({𝑥, 𝑦}) and we say
it has length length( [𝑥, 𝑦]) = ‖𝑥 − 𝑦‖.

A polyhedron is a set that can be written 𝑃 = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏} for 𝐴 ∈
R𝑚×𝑛, 𝑏 ∈ R𝑚. We will only consider convex polyhedra. A face 𝐹 ⊆ 𝑃 is a convex
subset such that if 𝑥, 𝑦 ∈ 𝑃 and 𝜆 ∈ (0, 1) satisfy 𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝐹, then 𝑥, 𝑦 ∈ 𝐹.
In particular, a set 𝐹 is a face of the polyhedron 𝑃 if and only if there exists 𝐼 ⊆ [𝑚]
such that 𝐹 coincides with 𝑃 intersected with 𝑎T

𝑖 𝑥 = 𝑏𝑖 ,∀𝑖 ∈ 𝐼, where 𝑎𝑖 , 𝑖 ∈ 𝐼 denote
rows of 𝐴. A zero-dimensional face is called a vertex, one-dimensional face is called
an edge, and a (dim(𝑃) − 1)-dimensional face is called a facet. We use the notation
vertices(𝑃) to denote the set of vertices of 𝑃 and edges(𝑃) for the set of edges of 𝑃.

For any polyhedron 𝑃 ⊆ R𝑛, a path is a sequence 𝑣1, 𝑣2, . . . , 𝑣𝑘 ∈ 𝑃 of vertices,
such that each line segment [𝑣𝑖 , 𝑣𝑖+1], 𝑖 ∈ [𝑘 −1], is an edge of 𝑃. A path is monotone
with respect to an inner product 〈𝑤, ·〉 if 〈𝑤, 𝑣𝑖+1〉 ≥ 〈𝑤, 𝑣𝑖〉 for every 𝑖 ∈ [𝑘 − 1].
The distance between vertices 𝑣1, 𝑣2 ∈ 𝑃 is the minimum number 𝑘 such that there
exists a path 𝑣′1, 𝑣

′
2, . . . , 𝑣

′
𝑘+1 with 𝑣1 = 𝑣′1 and 𝑣′𝑘+1 = 𝑣2. The diameter of 𝑃 is the

maximal distance between any two of its vertices.
When considering polyhedra, if 𝐴 is a matrix with rows 𝑎1, . . . , 𝑎𝑚 ∈ R𝑛, we

write 𝑄(𝐴) = conv(𝑎1, . . . , 𝑎𝑚) and 𝑃(𝐴) = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ ®1}. Given a right-hand
side 𝑏 ∈ R𝑚 we write 𝑃(𝐴, 𝑏) = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏}.

We will need the following classical comparison inequality for surface areas of
convex sets (see for example [24, Chapter 7]).
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Lemma 1.5.1 (Monotonicity of Surface Area). If 𝐾1 ⊆ 𝐾2 ⊆ R𝑛 are compact full-
dimensional convex sets, then vol𝑛−1(𝜕𝐾1) ≤ vol𝑛−1(𝜕𝐾2), where 𝜕 denotes the
topological boundary of a body.

Although this fact holds generally, its primary use in this thesis will be to argue
that any compact polygon 𝐾 ⊆ R2 has perimeter (the sum of the lengths of its edges)
at most 2𝜋max𝑥∈𝐾 ‖𝑥‖.

Random Variables
For a random variable 𝑋 ∈ R, we denote its expectation (mean) by E[𝑋] and its

variance by Var(𝑋) := E[(𝑋 − E[𝑋])2]. For a random vector 𝑌 ∈ R𝑛, we define its
expectation (mean) E[𝑌 ] := (E[𝑌1], . . . ,E[𝑌𝑛]) and its variance (expected squared
distance from the mean) Var(𝑌 ) := E[‖𝑌 − E[𝑌 ] ‖2].

If 𝜇 is a probability density function, we write 𝑥 ∼ 𝜇 to denote that 𝑥 is a random
variable distributed with probability density 𝜇. For an event 𝐸 ⊆ Ω in a measure
space, we write 𝐸𝑐 := Ω \ 𝐸 to denote its complement.

For jointly distributed 𝑋 ∈ Ω1, 𝑌 ∈ Ω2, we will often minimize the expectation
of 𝑋 over instantiations 𝑦 ∈ 𝐴 ⊆ Ω2. For this, we use the notation

min
𝑌 ∈𝐴

E[𝑋 | 𝑌 ] := min
𝑦∈𝐴

E[𝑋 | 𝑌 = 𝑦] .

Computational Model
We use the real model of computation, allowing basic arithmetic operations +,

−, ×, /, comparisons, square root computations. Exact square root computations
could be omitted by using approximate square roots; we assume exact computations
for simplicity. In Chapter 2 we furthermore assume that we can sample from the
Gaussian distribution.
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Chapter 2

Smoothed Analysis of the Simplex Method

Explaining the excellent practical performance of the simplex method for linear
programming has been a major topic of research for over 50 years. One of the most
successful frameworks for understanding the simplex method was given by Spielman
and Teng [179], who developed the notion of smoothed analysis. Starting from
an arbitrary linear program with 𝑛 variables and 𝑚 constraints, Spielman and Teng
analyzed the expected runtime over random perturbations of the LP, known as the
smoothed LP, where variance𝜎2 Gaussian noise is added to the LP data. In particular,
they gave a two-stage shadow vertex simplex algorithm which uses an expected
𝑂 (𝑛55𝑚86𝜎−30 + 𝑛70𝑚86) number of simplex pivots to solve the smoothed LP. Their
analysis and runtime was substantially improved by Deshpande and Spielman [66]
and later Vershynin [200]. The fastest current algorithm, due to Vershynin, solves
the smoothed LP using an expected 𝑂

(
log(𝑚)2 · log log𝑚 · (𝑛3𝜎−4 + 𝑛5 log(𝑚)2 +

𝑛9 log(𝑛)4)
)

number of pivots, improving the dependence on 𝑛 from polynomial to
poly-logarithmic.

In this chapter we present a new shadow vertex based simplex algorithm which
solves the smoothed LP using

𝑂 (𝑛2√log𝑚 𝜎−2 + 𝑛3 log(𝑚)3/2)

pivot steps in expectation. The result uses a shadow bound from my master’s the-
sis [109] and whose proof is included as Section 2.4 for the sake of readability.
Furthermore, this chapter includes a new smoothed analysis of the number of edges
of a two-dimensional polygon.

2.1 Introduction

The simplex method for linear programming is one of the most important algorithms
of the 20th century. Invented by Dantzig in 1947 [58, 59], it remains to this day

This chapter is based on [50] and [51], joint works with Daniel Dadush. The shadow bound
Theorem 2.4.1 and its application using the dimension-by-dimension algorithm also appeared in my
master’s thesis [109], whereas the symmetric random vertex algorithm and Theorem 2.3.1 are new.

15
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one of the fastest methods for solving LPs in practice. The simplex method is not
one algorithm however, but a class of LP algorithms, each differing in the choice
of pivot rule. At a high level, the simplex method moves from vertex to vertex
along edges of the feasible polyhedron, where the pivot rule decides which edges
to cross, until an optimal vertex or unbounded ray is found. Important examples
include Dantzig’s most negative reduced cost [59], the Gass and Saaty parametric
objective [88] and Goldfarb’s steepest edge [93] method. We note that for solving LPs
in the context of branch & bound and cutting plane methods for integer programming,
where the successive LPs are “close together”, the dual steepest edge method [82]
is the dominant algorithm in practice [21, 22], due its observed ability to quickly
re-optimize.

The continued success of the simplex method in practice is remarkable for two
reasons. Firstly, there is no known polynomial time simplex method for LP. In-
deed, there are exponential examples for almost every major pivot rule starting with
constructions based on deformed products [6, 9, 94, 98, 113, 125, 149], such as the
Klee-Minty cube [125], which defeat most classical pivot rules, and more recently
based on Markov Decision Processes (MDP) [72, 81, 85, 86], which notably defeat
randomized and history dependent pivot rules. Furthermore, for an LP with 𝑛 vari-
ables and 𝑚 constraints, the fastest provable (randomized) simplex method requires
2𝑂 (
√
𝑛 log(𝑚−𝑛)) pivots [106,117,138], while the observed practical behavior is linear

𝑂 (𝑛 + 𝑚) [172]. Secondly, it remains the most popular way to solve LPs despite the
tremendous progress for polynomial time methods [122], most notably, interior point
methods [119, 132, 143, 160]. How can we explain the simplex method’s excellent
practical performance?

This question has fascinated researchers for decades. An immediate question
is how to model instances in “practice”, or at least instances where the simplex
method should perform well? The research on this subject has, broadly speaking,
followed three different lines: the analysis of average case LP models, where natural
distributions of LPs are studied, the smoothed analysis of arbitrary LPs, where small
random perturbations are added to the LP data, and work on structured LPs, such
as totally unimodular systems and MDPs. We review the major results for the first
two lines in the next section, as they are the most relevant to the present work, and
defer additional discussion to the related work section. To formalize the model, we
consider LPs in 𝑛 variables and 𝑚 constraints of the following form:

max 𝑐T𝑥

𝐴𝑥 ≤ 𝑏.
(2.1)

We denote the feasible polyhedron by 𝑃 = 𝑃(𝐴, 𝑏) := {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏}. We now
introduce relevant details for the simplex methods of interest to this work.
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Parametric Simplex Algorithms While a variety of pivot rules have been studied,
the most successfully analyzed in theory are the so-called parametric simplex methods,
due to the useful geometric characterization of the paths they follow. The first such
method, and the main one used in the context of smoothed analysis, is the parametric
objective method of Gass and Saaty [88], dubbed the shadow (vertex) simplex method
by Borgwardt [26]. Starting at a known vertex 𝑣 of 𝑃 maximizing an objective 𝑐′,
the parametric objective method computes the path corresponding to the sequence of
maximizers for the objectives obtained by interpolating 𝑐′ → 𝑐. This path is well-
defined under mild non-degeneracy assumptions. The name shadow vertex method is
derived from the fact that the visited vertices are in correspondence with those on the
projection of 𝑃 onto 𝑊 := span(𝑐, 𝑐′), the 2D convex polygon known as the shadow
of 𝑃 on 𝑊 (see figure 2.2 for an illustration). In particular, the number of vertices
traversed by the method is bounded by the number of vertices of the projection, known
as the size of the shadow.

An obvious problem, as with most simplex methods, is how to initialize the
method at a feasible vertex if one exists. This is generally referred to as the Phase I
problem, where Phase II then corresponds to finding an optimal solution. A common
Phase I adds artificial variable(s) to make feasibility trivial and applies the simplex
method to drive them to zero.

A more general method, popular in the context of average case analysis, is the self-
dual parametric simplex method of Dantzig [60]. In this method, one simultaneously
interpolates the objectives 𝑐′ → 𝑐 and right hand sides 𝑏′ → 𝑏 which has the effect
of combining Phase I and II. Here 𝑐′ and 𝑏′ are chosen to induce a known initial
maximizer. While the polyhedron is no longer fixed, the breakpoints in the path of
maximizers (now a piecewise linear curve) can be computed via certain primal and
dual pivots. This procedure was in fact generalized by Lemke [134] to solve linear
complementarity problems. We note that the self dual method can roughly speaking
be simulated in a higher dimensional space by adding an interpolation variable 𝜆,
i.e. 𝐴𝑥 ≤ 𝜆𝑏 + (1 − 𝜆)𝑏′, 0 ≤ 𝜆 ≤ 1, which has been the principal approach in
smoothed analysis.

2.1.1 Prior Work

Here we present the main works in both average case and smoothed analysis which
inform our main results, presented in the next section. A common theme in these
works, which all study parametric simplex methods, is to first obtain a bound on the
expected parametric path length, with respect to some distribution on interpolations
and LPs, and then find a way to use the bounds algorithmically. This second step
can be non-obvious, as it is often the case that one cannot directly find a starting
vertex on the path in question. We now present the main random LP models that have
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been studied, presenting path length bounds and algorithms. Lastly, as our results are
in the smoothed analysis setting, we explain the high level strategies used to prove
smoothed (shadow) path bounds.

Average case Models The first model, introduced in the seminal work of Borgwardt
[26–28, 30], examined LPs of the form max 𝑐T𝑥, 𝐴𝑥 ≤ ®1, possibly with 𝑥 ≥ ®1
constraints (note that this model is always feasible at ®0), where the rows of 𝐴 ∈ R𝑚×𝑛
are drawn i.i.d. from a rotationally symmetric distribution (RSD) and 𝑐 ∈ R𝑛 \ {®0}
is fixed and non-zero. Borgwardt proved tight bounds on the expected shadow size
of the feasible polyhedron when projected onto any fixed plane. For general RSD, he
proved a sharp Θ(𝑛2𝑚1/(𝑛−1) ) [28, 30] bound, tight for rows drawn uniformly from
the sphere, and for Gaussians a sharp Θ(𝑛1.5√log𝑚) bound [28], though this last
bound is only known when 𝑚 is very large compared to 𝑛. On the algorithmic side,
Borgwardt [27] gave a dimension by dimension (DD) algorithm which solves a linear
program by traversing 𝑛 − 2 different shadow vertex paths to iteratively solve the
restrictions max 𝑐T𝑥, 𝐴𝑥 ≤ ®1, 𝑥𝑖 = 0, 𝑖 ∈ {𝑘 + 1, . . . , 𝑛}, for 𝑘 ≥ 2, which are all of
RSD type.

For the next class, Smale [173] analyzed the standard self dual method for LPs
where 𝐴 and (𝑐, 𝑏) are chosen from independent RSD distributions, where Megiddo
[141] gave the best known bound of 𝑓 (min{𝑛, 𝑚}) iterations, for some exponentially
large function 𝑓 . Adler [1] and Haimovich [105] examined a much weaker model
where the data is fixed, but where the signs of all the inequalities, including non-
negativity constraints, are flipped uniformly at random. Using the combinatorics of
hyperplane arrangements, they achieved a remarkable bound of𝑂 (min{𝑛, 𝑚}) for the
expected length of parametric paths. These results were made algorithmic shortly
thereafter [2,3,184], where it was shown that a lexicographic version of the parametric
self dual simplex method1 requires Θ(min{𝑛, 𝑚}2) iterations, where tightness was
established in [3]. While these results are impressive, a notable criticism of the
symmetry model is that it results in infeasible LPs with overwhelming probability
once 𝑚 is a bit larger than 𝑛.

Smoothed LP Models The smoothed analysis framework, introduced in the break-
through work of Spielman and Teng [179], helps explain the performance of algo-
rithms whose worst-case examples are in essence pathological, i.e., which arise from
very brittle structures in instance data. To get rid of these structures, the idea is to add
a small amount of noise to the data, quantified by a parameter 𝜎, where the general
goal is then to prove an expected running time bound over any smoothed instance that

1These works use seemingly different algorithms, though they were shown to be equivalent to a
lexicographic self-dual simplex method by Meggiddo [140].
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scales inverse polynomially with 𝜎. Beyond the simplex method, smoothed analysis
has been successfully applied to many other algorithms such as interior point meth-
ods [177], Gaussian elimination [166], Lloyd’s 𝑘-means algorithm [7], the 2-OPT
heuristic for the TSP [79], and much more.

The smoothed LP model, introduced by [179], starts with any base LP

max 𝑐T𝑥, �̄�𝑥 ≤ �̄�, (Base LP)

�̄� ∈ R𝑚×𝑛, �̄� ∈ R𝑚, 𝑐 ∈ R𝑛 \ {®0}, where the rows of ( �̄�, �̄�) are normalized to have ℓ2
norm at most 1. From the base LP, we generate the smoothed LP by adding Gaussian
perturbations to both the constraint matrix 𝐴 and the right hand side 𝑏. Precisely, the
data of the smoothed LP is

𝐴 = �̄� + �̂�, 𝑏 = �̄� + �̂�, 𝑐,

and we wish to solve

max 𝑐T𝑥, 𝐴𝑥 ≤ 𝑏, (Smoothed LP)

where the perturbations �̂�,�̂� have i.i.d. mean 0, variance 𝜎2 Gaussian entries. Note
that the objective is not perturbed in this model, though we require that 𝑐 ≠ ®0. An
LP algorithm is said to have polynomial smoothed complexity if for any base LP data
𝐴, 𝑏, 𝑐 as above, we have

E�̂�,�̂� [𝑇 (𝐴, 𝑏, 𝑐)] = poly(𝑚, 𝑛, 1/𝜎), (Smoothed Complexity)

where 𝑇 (𝐴, 𝑏, 𝑐) is the running time of the algorithm on a given smoothed instance.
Crucially, this complexity measure allows for an inverse polynomial dependence on
𝜎, the perturbation size. Focusing on the simplex method, 𝑇 will measure the number
of simplex pivots used by the algorithm as a proxy for the running time.

In previous works, the complexity of the algorithms is reduced in a black box
manner to a shadow bound for smoothed unit LPs. In particular, a smoothed unit
LP has a base system �̄�𝑥 ≤ ®1, where �̄� has row norms at most 1, and smoothing is
performed only to �̄�. Here the goal is to obtain a bound on the expected shadow size
with respect to any fixed plane. Note that if �̄� is the zero matrix, then this is exactly
Borgwardt’s Gaussian model, where he achieved the asymptotically tight bound of
Θ(𝑛1.5√log𝑚) when𝑚 is large compared to 𝑛 [28]. For smoothed unit LPs, Spielman
and Teng [179] gave the first bound of 𝑂 (𝑛3𝑚𝜎−6 + 𝑛6𝑚 log(𝑚)3). Deshpande and
Spielman [66] derived a bound of 𝑂 (𝑛𝑚2 log𝑚𝜎−2 + 𝑛2𝑚2 log(𝑚)2), substantially
improving the dependence on 𝜎 while squaring the dependence on 𝑚. Lastly, Ver-
shynin [200] achieved a bound of 𝑂 (𝑛3𝜎−4 + 𝑛5 log(𝑚)2), dramatically improving
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the dependence on 𝑚 to poly-logarithmic, though still with a worse dependence on 𝜎
than [66].

Before discussing the high level ideas for how these bounds are proved, we
overview how they are used algorithmically. In this context, [179] and [200] provide
two different reductions to the unit LP analysis, each via an interpolation method.
Spielman and Teng first solve the smoothed LP with respect to an artificial “somewhat
uniform” right hand side 𝑏′, constructed to force a randomly chosen basis of 𝐴 to
yield a vertex of the artificial system. From here they use the shadow vertex method
to compute a maximizer for the right hand side 𝑏′, and continue via interpolation
to derive an optimal solution for 𝑏. Here the analysis is quite challenging, since
in both steps the LPs are not quite smoothed unit LPs and the used shadow planes
correlate with the perturbations. To circumvent these issues, Vershynin uses a random
vertex (RV) algorithm, which starts with 𝑏′ = ®1 (i.e. a unit LP) and adds a random
additional set of 𝑛 inequalities to the system to induce an “uncorrelated known vertex”.
From this random vertex, he proceeds similarly to Spielman and Teng, but now at
every step the LP is of smoothed unit type and the used shadow planes are (almost)
independent of the perturbations. In Vershynin’s approach, the main hurdle was to
give a simple shadow vertex algorithm to solve unit LPs, which correspond to the
Phase I problem. An extremely simple method for this was in fact already given in the
early work of Borgwardt [28], namely, the dimension by dimension (DD) algorithm.
The application of the DD algorithm in the smoothed analysis context was however
only discovered much later by Schnalzger [168]. As it is both simple and not widely
known, we will describe the DD algorithm and its analysis in Section 2.5.

We note that beyond the above model, smoothed analysis techniques have been
used to analyze the simplex method in other interesting settings. In [35], the successive
shortest path algorithm for min-cost flow, which is a shadow vertex algorithm, was
shown to be efficient when only the objective (i.e. edge costs) is perturbed. In [121],
Kelner and Spielman used smoothed analysis techniques to give a “simplex like”
algorithm which solves arbitrary LPs in polynomial time. Here they developed a
technique to analyze the expected shadow size when only the right hand side of an
LP is perturbed.

Shadow Bounds for Smoothed Unit LPs Let 𝑎1, . . . , 𝑎𝑚 ∈ R𝑛, 𝑖 ∈ [𝑚], denote
the rows of the constraint matrix of the smoothed unit LP 𝐴𝑥 ≤ ®1. The goal is to
bound from above the expected number of vertices in the projection of the feasible
polyhedron 𝑃(𝐴) = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ ®1} onto a fixed 2D plane 𝑊 . As noticed by
Borgwardt, by a duality argument, this number of vertices is upper bounded by the
number of edges in the polar polygon (see Figure 2.2 for an illustration). Letting
𝑄(𝐴) := conv(𝑎1, . . . , 𝑎𝑚), the convex hull of the rows, the polar polygon can be
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expressed as 𝑄(𝐴) ∩𝑊 .
We survey the different approaches used in [66,179,200] to bound the number of

edges of 𝑄(𝐴) ∩𝑊 . Let 𝑢𝜃 , 𝜃 ∈ [0, 2𝜋], denote an angular parametrization of the
unit circle in 𝑊 , and let 𝑟𝜃 = 𝑢𝜃 · R≥0 denote the corresponding ray. Spielman and
Teng [179] bounded the probability that any two nearby rays 𝑟𝜃 and 𝑟𝜃+𝜀 intersect
different edges of 𝑄(𝐴) ∩ 𝑊 by a linear function of 𝜀. Summing this probability
over any fine enough discretization of the circle upper bounds the expected number
of edges of 𝑄(𝐴) ∩𝑊 .2 Their probability bound proceeds in two steps, first they
estimate the probability that the Euclidean distance between the intersection of 𝑟𝜃 with
its corresponding edge and the boundary of that edge is small (the distance lemma),
and second they estimate the probability that angular distance is small compared
to Euclidean distance (the angle of incidence bound). Vershynin [200] avoided the
use of the angle of incidence bound by measuring the intersection probabilities with
respect to the “best” of three different viewpoints, i.e. where the rays emanate from a
well-chosen set of three equally spaced viewpoints as opposed to just the origin. This
gave a much more efficient reduction to the distance lemma, and in particular allowed
Vershynin to reduce the dependence on 𝑛 from linear to poly-logarithmic. Deshpande
and Spielman [66] bounded different probabilities to get their shadow bound. Namely,
they bounded the probability that nearby objectives 𝑢𝜃 and 𝑢𝜃+𝜀 are maximized at
different vertices of 𝑄(𝐴) ∩𝑊 . The corresponding discretized sum over the circle
directly bounds the number of vertices of𝑄(𝐴) ∩𝑊 , which is the same as the number
of edges.

Complexity in two dimensions In two dimensions, the shadow size reduces to the
complexity of the convex hull. The convex hull of random points on two dimensions
was studied before by [57, 68, 168]. The best upper bound that can be found in the
mentioned references is𝑂 (

√
log𝑚 +𝜎−1√log𝑚), asymptotically slightly worse than

the bound 𝑂 (
√

log𝑚 + 𝜎−1) that we will prove in Theorem 2.3.1. The best available
lower bound is when E[𝑎1], . . . ,E[𝑎𝑚] are equally spaced on the unit circle, where

the convex hull has Ω(min(𝑚,
√

log𝑚 +
4√log𝑚√
𝜎
)) vertices in expectation. That result

can be found in [68].

2.1.2 Results

While the original proof of Spielman and Teng has now been substantially simplified,
the resulting analyses are still complex and the parameter improvements have not been
uniform. In this chapter, we give a “best of all worlds” analysis, which is both much

2One must be a bit more careful when 𝑄(𝐴) ∩𝑊 does not contain the origin, but the details are
similar.
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simpler and improves all prior parameter dependencies. The main novel contribution
is a new algorithm, which is analyzed using a shadow bound from my master’s thesis.
Since our algorithmic result requires a minor adaptation, the proof of this shadow
bound is included in full in this chapter.

Reference Expected Number of Vertices Model
[30] Θ(𝑛2𝑚1/(𝑛−1) ) RSD
[28] Θ(𝑛3/2√log𝑚) Gaussian, 𝑚 large
[179] 𝑂 (𝑛3𝑚𝜎−6 + 𝑛6𝑚 log(𝑚)3) Smooth
[66] 𝑂 (𝑛𝑚2 log𝑚 𝜎−2 + 𝑛2𝑚2 log(𝑚)2) Smooth
[200] 𝑂 (𝑛3𝜎−4 + 𝑛5 log(𝑚)2) Smooth
[109] 𝑂 (𝑛2

√
log𝑚 𝜎−2 + 𝑛2.5 log(𝑚)3/2 (1 + 𝜎−1)) Smooth

Table 2.1: Shadow Bounds. Logarithmic factors are simplified. The “Gaussian, 𝑚
large” lower bound applies in the smoothed model as well.

We note that the bounds below hold for 𝑛 ≥ 3. Recalling the models, the results
in the Table 2.1 bound the expected number of vertices in the projection of a random
polytope 𝐴𝑥 ≤ 1, 𝐴 ∈ R𝑚×𝑛, onto any fixed two-dimensional plane. The models
differ in the class of distributions examined for 𝐴. In the RSD model, the rows of
𝐴 are distributed i.i.d. according to an arbitrary rotationally symmetric distribution.
In the Gaussian model, the rows of 𝐴 are i.i.d. mean zero standard Gaussian vectors.
Note that this is a special case of the RSD model. In the smoothed model, the rows
of 𝐴 are 𝑛-dimensional Gaussian random vectors with standard deviation 𝜎 centered
at vectors of norm at most 1, i.e. the expected matrix E[𝐴] has rows of ℓ2 norm at
most 1. The “𝑚 large” in the table indicates that that bound only holds for 𝑚 large
enough (compared to 𝑛). The Gaussian model is a special case of the smoothed
analysis model, and hence the applicable lower bound of Ω(𝑛3/2√log𝑚) also holds
in the smoothed model under the same assumption of 𝑚 being large enough.

No interesting lower bounds for the small 𝜎 regime are known for 𝑛 ≥ 3, though
the results of [28, 67, 68] suggest that the correct lower bound might be lower than
current upper bounds.

From the algorithmic perspective, we describe the two phase interpolation ap-
proach of Vershynin [200], which we instantiate using two different Phase I algo-
rithms to solve unit LPs. As a warmup, we first describe Schnalzger’s application of
the dimension by dimension (DD) algorithm [168], as it yields the simplest known
Phase I algorithm and is not widely known. Following this, we introduce a new,
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Reference Expected Number of Pivots Model Algorithm
[28,168] 𝑛 ·max shadow size Multiple DD + Int. LP

[28, 30, 108] 𝑂 (𝑛2.5𝑚1/(𝑛−1) )
RSD,
𝑚 large

DD

[200] 𝑂
(
log(𝑚)3 (𝑛3𝜎−4+ 𝑛5 log(𝑚)2 + 𝑛9 log(𝑛)4)

)
Smooth RV + Int. LP

This chapter 𝑂 (𝑛2
√

log𝑚 𝜎−2 + 𝑛3 log(𝑚)3/2) Smooth
Symmetric RV

+ Int. LP

Table 2.2: Running time bounds. Logarithmic factors are simplified.

symmetric variant of Vershynin’s random vertex (RV) algorithm which induces an
artificial (degenerate) random vertex by adding 2𝑛 − 2 inequalities placed symmet-
rically around a randomly chosen objective. The symmetry condition ensures that
this random vertex optimizes the chosen objective with probability 1. Vershynin’s
original approach added 𝑛 random inequalities, which only induce the optimal vertex
for the chosen objective if the noise is small. Via a more careful analysis of the
RV algorithm combined with the additional guarantees ensured by our variant, we
derive a substantially improved complexity estimate. Specifically, our Symmetric RV
algorithm takes 𝑂 (𝑛2√log𝑚 𝜎−2 + 𝑛3 log(𝑚)3/2) pivot steps, which is faster than
both the original RV algorithm and Borgwardt’s dimension by dimension algorithm
in all parameter regimes. We defer further discussion of this to Section 2.5.

2.1.3 Techniques: Improved Shadow Bound

We now give a detailed sketch of the proof of the used shadow bound. Proofs of
all claims can be found in Section 2.4. The outline of the presentation is as follows.
To begin, we explain our general edge counting strategy, where we depart from the
previously discussed analyses. In particular, we adapt the approach of Kelner and
Spielman (KS) [121], who analyzed a smoothing model where only the right-hand
side is perturbed, to the present setting. Following this, we present a parametrized
shadow bound, which applies to any class of perturbations for which the relevant
parameters are bounded. The main motivation of the abstraction in the parametrized
model is to clearly identify the relevant properties of the perturbations we need to
obtain shadow bounds. Lastly, we give the high-level idea of how we estimate the
relevant quantities in the KS approach within the parametrized model.

Edge Counting Strategy The goal is to compute a bound on the expected number
of edges in the polygon 𝑄(𝐴) ∩𝑊 , where 𝑊 is the two-dimensional shadow plane,
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𝑄(𝐴) := conv(𝑎1, . . . , 𝑎𝑚) and 𝑎1, . . . , 𝑎𝑚 ∈ R𝑛 are the smoothed constraints of a
unit LP. Recall that this is an upper bound on the shadow size.

In [121], Kelner and Spielman developed a very elegant and useful alternative
strategy to bound the expected number of edges, which can be applied to many
distributions over 2D convex polygons. Whereas they analyzed the geometry of the
primal shadow polygon, the projection of 𝑃(𝐴) onto 𝑊 , we will instead work with
the geometry of the polar polygon𝑄(𝐴) ∩𝑊 . The analysis begins with the following
elementary identity:

E[perimeter(𝑄(𝐴) ∩𝑊)] = E[
∑

𝑒∈edges(𝑄 (𝐴)∩𝑊 )
length(𝑒)] . (2.2)

Starting from the above identity, the approach first derives a good upper bound
on the perimeter and a lower bound on the right-hand side in terms of the number
of edges and the minimum edge length. The bound on the number of edges is then
derived as the ratio of the perimeter bound and the minimum edge length.

We focus first on the perimeter upper bound. Since 𝑄(𝐴) ∩𝑊 is convex, any
containing circle has larger perimeter. Furthermore, we clearly have 𝑄(𝐴) ∩𝑊 ⊆
𝜋𝑊 (𝑄(𝐴)), where 𝜋𝑊 is the orthogonal projection onto 𝑊 . Combining these two
observations, we derive the first useful inequalities:

E[perimeter(𝑄(𝐴) ∩𝑊)] ≤ E[2𝜋 max
𝑥∈𝑄 (𝐴)∩𝑊

‖𝑥‖] ≤ E[2𝜋 max
𝑖∈[𝑚]

‖𝜋𝑊 (𝑎𝑖)‖] . (2.3)

To extract the expected number of edges from the right hand side of (2.2), we first
note that every edge of 𝑄(𝐴) ∩𝑊 is derived from a facet of 𝑄(𝐴) intersected with
𝑊 (see Figure 2.2 for an illustration). Assuming non-degeneracy, the possible facets
of 𝑄(𝐴) are 𝐹𝐼 := conv(𝑎𝑖 : 𝑖 ∈ 𝐼), where 𝐼 ⊆ [𝑚] is any subset of size 𝑛. Let 𝐸𝐼
denote the event that 𝐹𝐼 induces an edge of 𝑄(𝐴) ∩𝑊 , or more precisely, that 𝐹𝐼 is
a facet of 𝑄(𝐴) and that 𝐹𝐼 ∩𝑊 ≠ ∅. From here, we get that

E[
∑

𝑒∈edges(𝑄 (𝐴)∩𝑊 )
length(𝑒)] =

∑
|𝐼 |=𝑛

E[length(𝐹𝐼 ∩𝑊) | 𝐸𝐼 ] Pr[𝐸𝐼 ]

≥ min
|𝐼 |=𝑛

E[length(𝐹𝐼 ∩𝑊) | 𝐸𝐼 ] ·
∑
|𝐼 |=𝑛

Pr[𝐸𝐼 ]

= min
|𝐼 |=𝑛

E[length(𝐹𝐼 ∩𝑊) | 𝐸𝐼 ] · E[|edges(𝑄(𝐴) ∩𝑊) |] .

(2.4)

Combining (2.2), (2.3), (2.4), we derive the following fundamental bound:

E[|edges(𝑄(𝐴) ∩𝑊) |] ≤
E[2𝜋max𝑖∈[𝑚] ‖𝜋𝑊 (𝑎𝑖)‖]

min |𝐼 |=𝑛 E[length(𝐹𝐼 ∩𝑊) | 𝐸𝐼 ]
. (2.5)
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In the actual proof, we further restrict our attention to potential edges having
probability Pr[𝐸𝐼 ] ≥ 2

(𝑚
𝑛

)−1 of appearing, which helps control how extreme the
conditioning on 𝐸𝐼 can be. Note that the edges appearing with probability smaller
than 2

(𝑚
𝑛

)−1 contribute at most 2 to the expected number of edges, and hence can
be ignored. Thus our task now directly reduces to showing that the maximum
perturbation is not too large on average, an easy condition, while ensuring that the
edges that are not too unlikely to appear are reasonably long on average, the more
difficult condition.

We note that applying the KS approach already improves the situation with respect
to the maximum perturbation size compared to earlier analyses, as [66, 179, 200] all
require a bound to hold with high probability as opposed to on expectation. For this
purpose, they enforced the condition 1/𝜎 ≥

√
𝑛 log𝑚 (for Gaussian perturbations),

which we do not require here.

Bound for Parametrized Distributions We now present the parameters of the
pertubation distributions we use to obtain bounds on the numerator and denominator
of 2.5. We also discuss how these parameters behave for the Gaussian and Laplace
distribution.

Let us assume that 𝑎1, . . . , 𝑎𝑚 ∈ R𝑛 are independently distributed. As before
we assume that the centers 𝑎𝑖 := E[𝑎𝑖], 𝑖 ∈ [𝑚], have norm at most 1. We denote
the perturbations by �̂�𝑖 := 𝑎𝑖 − �̄�𝑖 , 𝑖 ∈ [𝑚]. We will assume for simplicity of the
presentation that all the perturbations �̂�1, . . . , �̂�𝑚 are i.i.d. according to a distribution
with probability density 𝜇 (in general, they could each have a distinct distribution).

At a high-level, the main properties we require of the distribution are that it be
smooth and that it have sufficiently strong tail bounds. We formalize these require-
ments via the following 4 parameters, where we let 𝑋 ∼ 𝜇 below:

1. 𝜇 is an 𝐿-log-Lipschitz probability density function, that is,
|log 𝜇(𝑥) − log 𝜇(𝑦) | ≤ 𝐿‖𝑥 − 𝑦‖, ∀𝑥, 𝑦 ∈ R𝑛.

2. The variance of 𝑋 , when restricted to any line 𝑙 ⊆ R𝑛, is at least 𝜏2.

3. The cutoff radius 𝑅𝑚,𝑛 > 0 is such that Pr[‖𝑋 ‖ ≥ 𝑅𝑚,𝑛] ≤ 1
𝑛(𝑚𝑛)

.

4. The 𝑚-th deviation 𝑟𝑚 is such that, for all 𝜃 ∈ R𝑛, ‖𝜃‖ = 1, and 𝑋1, . . . , 𝑋𝑚
i.i.d., we have E[max𝑖∈[𝑚] |〈𝑋𝑖 , 𝜃〉|] ≤ 𝑟𝑚.

We refer the reader to subsection 2.4.1 for more formal definitions of these parameters.
We note that these parameters naturally arise from the proof strategy and directly
expose the relevant quantities for the shadow bound.
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The first two parameters are smoothness related while the last two relate to
tail bounds. Using these four parameters, we will derive appropriate bounds for
the numerator and denominator in (2.5). Assuming the above parameter bounds for
�̂�1, . . . , �̂�𝑚, the main “plug and play” bound on the expected shadow size is as follows
(see Theorem 2.4.10):

E[|edges(conv(𝑎1, . . . , 𝑎𝑚) ∩𝑊) |] = 𝑂 (
𝑛1.5𝐿

𝜏
(1 + 𝑅𝑚,𝑛) (1 + 𝑟𝑛)) . (2.6)

We can use this parametrized bound to prove the shadow bound for Gaussian
and Laplace distributed noise. For the variance 𝜎2 Gaussian distribution in R𝑛,
it is direct to verify that 𝜏 = 𝜎 for any line (since every line restriction results
in a 1D variance 𝜎2 Gaussian), and from standard tail bounds for the Gaussian
distribution we get that 𝑅𝑚,𝑛 = 𝑂 (𝜎

√
𝑛 log𝑚) and 𝑟𝑚 = 𝑂 (𝜎

√
log𝑚). The only

parameter that cannot be bounded directly is the log-Lipschitz parameter 𝐿, since
‖𝑥/𝜎‖2/2, the log of the Gaussian density, is quadratic. For Laplace distributed
perturbations however, this last difficulty is completely avoided. Here a comparably
sized Laplace perturbation (i.e. same expected norm) has density proportional to
𝑒−(
√
𝑛/𝜎) ‖𝑥 ‖ which is by definition log-Lipshitz with 𝐿 =

√
𝑛/𝜎. The other parameters

are somewhat worse, it can be shown that 𝑅𝑚,𝑛 = 𝑂 (𝜎√𝑛 log𝑚), 𝑟𝑚 = 𝑂 (𝜎 log𝑚)
and 𝜏 ≥ 𝜎/√𝑛, where in particular 𝜏 is a

√
𝑛-factor smaller than the Gaussian. Thus,

for Laplace perturbations the parametrized bound applies directly and yields a bound
of 𝑂 (𝑛2.5𝜎−2) in the small 𝜎 regime.

To apply this analysis to the Gaussian setting, we start with the fact, noted in
all prior analyses, that the Gaussian is locally smooth within any fixed radius. In
particular, within radius 𝑅𝑚,𝑛 of the mean, the Gaussian density is 𝑂 (

√
𝑛 log𝑚/𝜎)-

log-Lipschitz. As events that happen with probability �
(𝑚
𝑛

)−1 have little effect on
the expected shadow bound (recall that the shadow is always bounded by

(𝑚
𝑛

)
), one

can hope to condition on each perturbation living inside the 𝑅𝑚,𝑛 radius ball. This
is in fact the approach taken in the prior analyses [66, 179, 200]. This conditioning
however does not ensure full log-Lipshitzness and causes problems for points near
the boundary. Furthermore, the conditioning may also decrease line variances for
lines near the boundary.

To understand why this is problematic, we note that the main role of the smooth-
ness parameters 𝐿 and 𝜏 is to ensure enough “wiggle-room” to guarantee that edges
induced by any fixed basis are long on expectation. Using the above conditioning, it is
clear that edges induced by facets whose perturbations occur close to the 𝑅𝑚,𝑛 bound-
ary must be dealt with carefully. To avoid such difficulties altogether, we leverage the
local log-Lipshitzness of the Gaussian in a “smoother” way. Instead of conditioning,
we simply replace the Gaussian density with a globally 𝑂 (

√
𝑛 log𝑚/𝜎)-log-Lipshitz

density which has statistical distance �
(𝑚
𝑛

)−1 to the Gaussian (thus preserving the
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shadow bound) and also yields nearly identical bounds for the other parameters. This
distribution will consist of an appropriate gluing of a Gaussian and Laplace density,
which we call the Laplace-Gaussian distribution (see Section 2.4.3 for details). Thus,
by slightly modifying the distribution, we are able to use the parametrized model to
obtain shadow bounds for Gaussian perturbations in a black box manner.

Bounding the Perimeter and Edge Length We now briefly describe how the
perimeter and minimum edge length in (2.5) are bounded in the parametrized pertur-
bation model to obtain (2.6). As this is the most technical part of the analysis, we
refer the reader to the proofs in Section 2.4 and give only a very rough discussion
here. As above, we will assume that the perturbations satisfy the bounds given by
𝐿, 𝜏, 𝑅𝑚,𝑛, 𝑟𝑚.

For the perimeter bound, we immediately derive the bound

E[max
𝑖∈[𝑚]

‖𝜋𝑊 (𝑎𝑖)‖] ≤ 1 + E[max
𝑖∈[𝑚]

‖𝜋𝑊 (�̂�𝑖)‖] ≤ 1 + 2𝑟𝑚

by the triangle inequality. From here, we must bound the minimum expected edge
length, which requires the majority of the work. For this task, we provide a clean
analysis, which shares high-level similarities with the Spielman and Teng distance
lemma, though our task is simpler. Firstly, we only need to show that an edge is large
on average, whereas the distance lemma has the more difficult task of proving that an
edge is unlikely to be small. Second, the conditioning is much milder. Namely, the
distance lemma conditions a facet 𝐹𝐼 on intersecting a specified ray 𝑟𝜃 , whereas we
only condition 𝐹𝐼 on intersecting 𝑊 . This conditioning gives the edge much more
“wiggle room”, and is the main leverage we use to get the factor 𝑛 improvement.

Let us fix 𝐹 := 𝐹[𝑛] = conv(𝑎1, . . . , 𝑎𝑛) as the potential facet of interest, under the
assumption that 𝐸 := 𝐸 [𝑛] , i.e., that 𝐹 induces an edge of 𝑄(𝐴) ∩𝑊 , has probability
at least 2

(𝑚
𝑛

)−1. The analysis of the edge length conditioned on 𝐸 proceeds as follows:

1. Show that if 𝐹 induces an edge, then under this conditioning 𝐹 has small
diameter with good probability, namely its vertices are all at distance at most
𝑂 (1+𝑅𝑚,𝑛) from each other (Lemma 2.4.17). This uses the tailbound defining
𝑅𝑚,𝑛 and the fact that 𝐸 occurs with non-trivial probability.

2. Condition on 𝐹 being a facet of𝑄(𝐴) by fixing its containing affine hyperplane
𝐻 (Lemma 2.4.19). This is standard and is achieved using a change of variables
known as a Blaschke-Petkantschin formula (see Section 2.2 for details).

3. Let 𝑙 := 𝐻∩𝑊 denote the line which intersects 𝐹 to form an edge of𝑄(𝐴) ∩𝑊 .
Show that on average the longest chord of 𝐹 parallel to 𝑙 is long. We achieve
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the bound Ω(𝜏/√𝑛) (Lemma 2.4.27) using that the vertices of 𝐹 restricted to
lines parallel to 𝑙 have variance at least 𝜏2.

4. Show that on average 𝐹 is pierced by 𝑙 through a chord that is not too much
shorter than the longest one. Here we derive the final bound on the expected
edge length of

E[length(𝐹 ∩𝑊) | 𝐸] = Ω((𝜏/
√
𝑛) · 1/(𝑛𝐿 (1 + 𝑅𝑚,𝑛))) (Lemma 2.4.26)

using the fact that the distribution of the vertices is 𝐿-log-Lipschitz and that 𝐹
has diameter 𝑂 (1 + 𝑅𝑚,𝑛).

This concludes the high-level discussion of the proof.

2.1.4 Related work

Structured Polytopes An important line of work has been to study LPs with good
geometric or combinatorial properties. Much work has been done to analyze primal
and dual network simplex algorithms for fundamental combinatorial problems on
flow polyhedra such as bipartite matching [110], shortest path [70, 97], maximum
flow [92,95] and minimum cost flow [96,156,157]. Generalizing on the purely com-
binatorial setting, LPs where the constraint matrix 𝐴 ∈ Z𝑚×𝑛 is totally unimodular
(TU), i.e. the determinant of any square submatrix of 𝐴 is in {0,±1}, were analyzed
by Dyer and Frieze [75], who gave a random walk based simplex algorithm which
requires poly(𝑛, 𝑚) pivots. Recently, an improved random walk approach was given
by Eisenbrand and Vempala [78], which works in the more general setting where
the subdeterminants are bounded in absolute value by Δ, who gave an 𝑂 (poly(𝑛,Δ))
bound on the number of Phase II pivots (note that there is no dependence on 𝑚).
Furthermore, randomized variants of the shadow vertex algorithm were analyzed in
this setting by [36, 47], where in particular [47] gave an expected 𝑂 (𝑛5Δ2 log(𝑛Δ))
bound on the number of Phase I and II pivots. Another interesting class of struc-
tured polytopes comes from the LPs associated with MDP, where simplex rules such
as Dantzig’s most negative reduced cost correspond to variants of policy iteration.
Ye [205] gave polynomial bounds for Dantzig’s rule and Howard’s policy iteration for
MDPs with a fixed discount rate, and Ye and Post [159] showed that Dantzig’s rule
converges in strongly polynomial time for deterministic MDPs with variable discount
rates.
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2.1.5 Organization

Section 2.2 contains basic definitions and background material. We study the
smoothed complexity of the convex hull in two dimensions in Section 2.3. Fol-
lowing a similar strategy, the proofs of the shadow bound are given in Section 2.4.
The details regarding the two phase shadow vertex algorithm we use, which rely in
an almost black box way on the shadow bound, are presented in Section 2.5.

2.2 Preliminaries

Gaussian distribution

Definition 2.2.1. The Gaussian distribution or normal distribution 𝑁𝑛 (�̄�, 𝜎) in 𝑛
variables with mean �̄� and standard deviation 𝜎 has density (2𝜋)−𝑛/2𝑒−‖𝑥−�̄� ‖2/(2𝜎2) .
We abbreviate 𝑁𝑛 (𝜎) = 𝑁𝑛 (®0, 𝜎).

Important facts about the Gaussian distribution include:

• Given a 𝑘-dimensional affine subspace 𝑊 ⊆ R𝑛, if 𝑋 is 𝑁𝑛 (�̄�, 𝜎)-distributed
then both the orthogonal projection 𝜋𝑊 (𝑋) and the restriction of 𝑋 to 𝑊 are
𝑁𝑘 (𝜋𝑊 (�̄�), 𝜎)-distributed in𝑊 .

• For 𝑋 ∼ 𝑁𝑛 (�̄�, 𝜎) we have E[𝑋] = �̄� and E[((𝑋 − �̄�)T𝜃)2] = 𝜎2 for all
𝜃 ∈ S𝑛−1.

• The expected squared distance to the mean is E[‖𝑋 − �̄�‖2] = 𝑛𝜎2.

• The moment generating function of 𝑋 ∼ 𝑁1(0, 𝜎) is E[𝑒𝜆𝑋 ] = 𝑒𝜆2𝜎2/2, for all
𝜆 ∈ R, and that of 𝑋2 is E[𝑒𝜆𝑋2] = 1/

√
1 − 2𝜆𝜎 for 𝜆 < 1/(2𝜎).

We will need the following tail bound for Gaussian random variables. We include
a proof for completeness.

Lemma 2.2.2 (Gaussian tail bounds). For 𝑋 ∈ R𝑛 distributed as 𝑁𝑛 (®0, 𝜎), 𝑡 ≥ 1,

Pr[‖𝑋 ‖ ≥ 𝑡𝜎
√
𝑛] ≤ 𝑒−(𝑛/2) (𝑡−1)2 . (2.7)

For 𝜃 ∈ S𝑛−1 and 𝑡 ≥ 0,

Pr[|𝑋T𝜃 | ≥ 𝑡𝜎] ≤ 2𝑒−𝑡
2/2 . (2.8)

Proof. By homogeneity, we may without loss of generality assume that 𝜎 = 1.
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Proof of (2.7)

Pr[‖𝑋 ‖ ≥
√
𝑛𝑡] = min

𝜆∈(0,1/2)
Pr[𝑒𝜆‖𝑋 ‖2 ≥ 𝑒𝜆𝑡2𝑛]

≤ min
𝜆∈(0,1/2)

E[𝑒𝜆‖𝑋 ‖2]𝑒−𝜆𝑡2𝑛 (Markov’s inequality)

= min
𝜆∈(0,1/2)

(
𝑛∏
𝑖=1

E[𝑒𝜆𝑋2
𝑖 ]

)
𝑒−𝜆𝑡

2𝑛 (Independence of coefficients)

= min
𝜆∈(0,1/2)

(
1

1 − 2𝜆

)𝑛/2
𝑒−𝜆𝑡

2𝑛

≤ 𝑒−(𝑛/2) (𝑡2−2 log 𝑡−1) (setting 𝜆 =
1
2
(1 − 1/𝑡2))

≤ 𝑒−(𝑛/2) (𝑡−1)2 (since log 𝑡 ≤ 𝑡 − 1 for 𝑡 ≥ 1).

Proof of (2.8)

Pr[|𝑋T𝜃 | ≥ 𝑡] = 2 Pr[𝑋T𝜃 ≥ 𝑡]
≤ 2 min

𝜆>0
E[𝑒𝜆𝑋T 𝜃 ]𝑒−𝜆𝑡

= 2 min
𝜆>0

𝑒𝜆
2/2−𝜆𝑡 ≤ 2𝑒−𝑡

2/2 , setting 𝜆 = 𝑡.

□

Laplace distribution Our shadow bounds will hold for a general class of distri-
butions with bounds on certain parameters. We illustrate this for the 𝑛-dimensional
Laplace distribution.

Definition 2.2.3. The Laplace distribution 𝐿𝑛 (�̄�, 𝜎) or exponential distribution in
R𝑛 with mean vector �̄� has probability density function

√
𝑛
𝑛

(𝑛 − 1)!𝜎𝑛vol𝑛−1(S𝑛−1)
𝑒−‖𝑥−�̄� ‖

√
𝑛/𝜎 .

We abbreviate 𝐿𝑛 (𝜎) = 𝐿𝑛 (®0, 𝜎). We have normalized the distribution to have
expected norm

√
𝑛𝜎. Additionally, the variance along any direction is 𝜎2(1 + 1

𝑛 ).

The norm of a Laplace distributed random variable follows a Gamma distribution.

Definition 2.2.4. The Gamma distributionΓ(𝛼, 𝛽), 𝛼 ∈ N, 𝛽 ∈ R, on the non-negative
real numbers has probability density 𝛽𝛼

(𝛼−1)! 𝑡
𝛼−1𝑒−𝛽𝑡 . The moment generating func-

tion of the Gamma distribution is E𝑋∼Γ(𝛼,𝛽) [𝑒𝜆𝑋 ] = (1 − 𝜆/𝛽)−𝛼 for 𝜆 < 𝛽.
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One can generate a 𝑛-dimensional Laplace distribution 𝐿𝑛 (𝜎) as the product of
an independent scalar and vector. The vector 𝜃 is sampled uniformly from the sphere
S𝑛−1. The scalar 𝑠 ∼ Γ(𝑛,√𝑛/𝜎) is sampled from the Gamma distribution. The
product 𝑠𝜃 has a 𝐿𝑛 (𝜎)-distribution.

We will need the following tail bound for Laplace distributed random variables.
We include a proof for completeness.

Lemma 2.2.5 (Laplace tail bounds). For 𝑋 ∈ R𝑛, 𝑛 ≥ 2, distributed as (®0, 𝜎)-
Laplace and 𝑡 ≥ 1,

Pr[‖𝑋 ‖ ≥ 𝑡𝜎
√
𝑛] ≤ 𝑒−𝑛(𝑡−log 𝑡−1) . (2.9)

In particular, for 𝑡 ≥ 2,

Pr[‖𝑋 ‖ ≥ 𝑡𝜎
√
𝑛] ≤ 𝑒−𝑛𝑡/7 . (2.10)

For 𝜃 ∈ S𝑛−1, 𝑡 ≥ 0,

Pr[|𝑋T𝜃 | ≥ 𝑡𝜎] ≤
{

2𝑒−𝑡2/16 : 0 ≤ 𝑡 ≤ 2
√
𝑛

𝑒−
√
𝑛𝑡/7 : 𝑡 ≥ 2

√
𝑛

. (2.11)

Proof. By homogeneity, we may without loss of generality assume that 𝜎 = 1.

Proof of (2.9)

Pr[‖𝑋 ‖ ≥
√
𝑛𝑡] = min

𝜆∈(0,√𝑛)
Pr[𝑒𝜆‖𝑋 ‖ ≥ 𝑒𝜆

√
𝑛𝑡 ]

≤ min
𝜆∈(0,√𝑛)

E[𝑒𝜆‖𝑋 ‖]𝑒−𝜆
√
𝑛𝑡 (Markov’s inequality)

≤ min
𝜆∈(0,√𝑛)

(1 − 𝜆/
√
𝑛)−𝑛𝑒−𝜆

√
𝑛𝑡

= 𝑒−𝑛(𝑡−log 𝑡−1) , setting 𝜆 =
√
𝑛(1 − 1/𝑡).

For the case 𝑡 ≥ 2, the desired inequality follows from the fact that 𝑡 − log 𝑡 − 1 ≥ 𝑡/7
for 𝑡 ≥ 2, noting that (𝑡 − log 𝑡 − 1)/𝑡 is an increasing function on 𝑡 ≥ 1.

Proof of (2.11) For 𝑡 ≥ 2
√
𝑛, we directly apply equation (2.10):

Pr[|𝑋T𝜃 | ≥ 𝑡𝜎] ≤ Pr[‖𝑋 ‖ ≥ 𝑡𝜎] ≤ 𝑒−
√
𝑛𝑡/7.

For 𝑡 ≤ 2
√
𝑛, express 𝑋 = 𝑠 · 𝜔 for 𝑠 ∼ Γ(𝑛,√𝑛/𝜎), 𝜔 ∈ S𝑛−1 uniformly sampled.

Pr[|𝑠𝜔T𝜃 | ≥ 𝑡𝜎] ≤ Pr[|𝜔T𝜃 | ≥ 𝑡/(2
√
𝑛)] + Pr[|𝑠 | ≥ 2

√
𝑛𝜎]

≤ Pr[|𝜔T𝜃 | ≥ 𝑡/(2
√
𝑛)] + 𝑒−𝑛/4.
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𝑡/(2√𝑛)

1

Figure 2.1: The small sphere has at least as much surface area as combined surface
area of the enclosed sphere cap and the opposite cap together by the monotonicity of
surface area (Lemma 1.5.1).

For the first term we follow [12, Lemma 2.2], where the second line is illustrated
in Figure 2.1:

Pr[|𝜔T𝜃 | ≥ 𝑡/(2
√
𝑛)] = vol𝑛−1({𝜔 ∈ S𝑛−1 : |𝜔T𝜃 | ≥ 𝑡/(2√𝑛)})

vol𝑛−1(S𝑛−1)

≤
vol𝑛−1(

√
1 − 𝑡2

4𝑛S
𝑛−1)

vol𝑛−1(S𝑛−1)

= (1 − 𝑡2

4𝑛
) (𝑛−1)/2

≤ 𝑒−𝑡2 (𝑛−1)/(8𝑛) ≤ 𝑒−𝑡2/16.

The desired conclusion follows since 𝑒−𝑡2/16 + 𝑒−𝑛/4 ≤ 2𝑒−𝑡2/16 for 0 ≤ 𝑡 ≤ 2
√
𝑛. □

Change of variables In Section 2.4 we make use of a change of variables that
known as a Blaschke–Petkantschin formula and is standard in the study of convex
hulls, see, e.g., [169].

Recall that a change of variables affects a probability distribution. Let the vector
𝑦 ∈ R𝑛 be a random variable with density 𝜇. If 𝑦 = 𝜑(𝑥) and 𝜑 is invertible, then the
induced density on 𝑥 is

𝜇(𝜑(𝑥))
����det

(
𝜕𝜑(𝑥)
𝜕𝑥

)����,
where

���det
(
𝜕𝜑 (𝑥)
𝜕𝑥

)��� is the Jacobian of 𝜑. We describe a particular change of vari-
ables which has often been used for studying convex hulls, and, in particular, by
Borgwardt [28] and Spielman and Teng [179] for deriving shadow bounds.
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For affinely independent vectors 𝑎1, . . . , 𝑎𝑛 ∈ R𝑛 we have the coordinate trans-
formation

(𝑎1, . . . , 𝑎𝑛) ↦→ (𝜃, 𝑡, 𝑏1, . . . , 𝑏𝑛),
where 𝜃 ∈ S𝑛−1 and 𝑡 ≥ 0 satisfy 𝜃T𝑎𝑖 = 𝑡 for every 𝑖 ∈ [𝑛] and the vectors
𝑏1, . . . , 𝑏𝑛 ∈ R𝑛−1 parametrize the positions of 𝑎1, . . . , 𝑎𝑛 within the hyperplane
{𝑥 ∈ R𝑛 | 𝜃T𝑥 = 𝑡}. We coordinatize the hyperplanes as follows:

Fix a reference vector 𝑣 ∈ S𝑛−1, and pick an isometric embedding ℎ : R𝑛−1 → 𝑣⊥.
For any unit vector 𝜃 ∈ S𝑛−1, define the map 𝑅′𝜃 : R𝑛 → R𝑛 as the unique map that
rotates 𝑣 to 𝜃 along span(𝑣, 𝜃) and fixes the orthogonal subspace span(𝑣, 𝜃)⊥. We
define 𝑅𝜃 = 𝑅′𝜃 ◦ ℎ. The change of variables from 𝜃 ∈ S𝑛−1, 𝑡 > 0, 𝑏1, . . . , 𝑏𝑛 ∈ R𝑛−1

to 𝑎1, . . . , 𝑎𝑛 takes the form

(𝑎1, . . . , 𝑎𝑛) = (𝑅𝜃𝑏1 + 𝑡𝜃, . . . , 𝑅𝜃𝑏𝑛 + 𝑡𝜃).

The change of variables as specified above is not uniquely defined when 𝑎1, . . . , 𝑎𝑛
are affinely dependent, when 𝑡 = 0 or when 𝜃 = −𝑣.
Theorem 2.2.6. Let 𝜃 ∈ S𝑛−1 be a unit vector, 𝑡 > 0 and 𝑏1, . . . , 𝑏𝑛 ∈ R𝑛−1. Consider
the map

(𝜃, 𝑡, 𝑏1, . . . , 𝑏𝑛) ↦→ (𝑎1, . . . , 𝑎𝑛) = (𝑅𝜃𝑏1 + 𝑡𝜃, . . . , 𝑅𝜃𝑏𝑛 + 𝑡𝜃).

The Jacobian of this map equals����det
(
𝜕𝜑(𝑥)
𝜕𝑥

)���� = (𝑛 − 1)!vol𝑛−1(conv(𝑏1, . . . , 𝑏𝑛)).

2.2.1 Shadow vertex algorithm

We briefly introduce the shadow vertex algorithm. An alternative exposition about
the shadow vertex algorithm can be found in [28].

Let 𝑃(𝐴, 𝑏) = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏} be a polyhedron, and let 𝑎1, . . . , 𝑎𝑚 ∈ R𝑛
correspond to the rows of 𝐴. We call a set 𝐵 ⊆ [𝑚] a basis of 𝐴𝑥 ≤ 𝑏 if 𝐴𝐵 is
invertible. This implies that |𝐵| = 𝑛. We say 𝐵 is a feasible basis if 𝑥𝐵 = 𝐴−1

𝐵 𝑏𝐵
satisfies 𝐴𝑥𝐵 ≤ 𝑏. Such a point 𝑥𝐵 is always a vertex of 𝑃(𝐴, 𝑏). We say a feasible
basis 𝐵 is optimal for an objective 𝑐 ∈ R𝑛 if 𝑐T𝐴−1

𝐵 ≥ ®0, which happens if and only if
max𝑥∈𝑃 𝑐T𝑥 = 𝑐T𝑥𝐵.

The shadow vertex algorithm is a pivot rule for the simplex method. Given a
feasible basis 𝐵 ⊆ [𝑚], an objective 𝑑 ∈ R𝑛 for which 𝐵 is optimal, and an objective
function 𝑐 ∈ R𝑛 to optimize, where 𝑐 and 𝑑 are linearly independent, the shadow
vertex algorithm (Algorithm 1) specifies which pivot steps to take to reach an optimal
basis for 𝑐. We note that there are many possible choices for starting objective 𝑑.
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Algorithm 1 Shadow vertex algorithm for non-degenerate polyhedron and shadow.
Input: 𝑃(𝐴, 𝑏) = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ 𝑏}, 𝑐, 𝑑 ∈ R𝑛, feasible basis 𝐵 ⊆ [𝑚] optimal for

𝑑.
Output: Return optimal basis 𝐵 ⊆ [𝑚] for 𝑐 or unbounded.

1: 𝜆0 ← 0.
2: 𝑖 ← 0.
3: loop
4: 𝑖 ← 𝑖 + 1.
5: 𝜆𝑖 := maximum 𝜆 ≤ 1 such that 𝑐T

𝜆𝐴
−1
𝐵 ≥ ®0.

6: if 𝜆𝑖 = 1 then return B.
7: 𝑘 := 𝑘 ∈ 𝐵 such that (𝑐T

𝜆𝑖
𝐴−1
𝐵 )𝑘 = 0.

8: 𝑥𝐵 := 𝐴−1
𝐵 𝑏𝐵.

9: 𝑠𝑖 := supremum 𝑠 > 0 such that 𝐴(𝑥𝐵 − 𝑠𝐴−1
𝐵 𝑒𝑘) ≤ 𝑏.

10: if 𝑠𝑖 = ∞ then return unbounded.
11: 𝑗 := 𝑗 ∈ [𝑚] − 𝐵 such that 𝑎 𝑗T (𝑥𝐵 − 𝑠𝑖𝐴−1

𝐵 𝑒𝑘) = 𝑏 𝑗 .
12: 𝐵← 𝐵 ∪ { 𝑗} \ {𝑘}.

We parametrize 𝑐𝜆 := (1 − 𝜆)𝑑 + 𝜆𝑐 and start at 𝜆 = 0. The shadow vertex rule
increases 𝜆 until there are 𝑗 ≠ 𝑘 ∈ [𝑚] such that a new feasible basis 𝐵 ∪ { 𝑗} \ {𝑘}
is optimal for 𝑐𝜆, and repeats with increased 𝜆 and new basis 𝐵 until 𝜆 = 1.

The index 𝑘 ∈ 𝐵 is such that the coordinate for 𝑘 in 𝑐T
𝜆𝐴
−1
𝐵 first lowers to 0, and

𝑗 ∉ 𝐵 is such that 𝐵∪{ 𝑗}\{𝑘} is a feasible basis: we follow the edge 𝐴−1
𝐵 𝑏𝐵−𝐴−1

𝐵 𝑒𝑘R+
until we hit the first constraint 𝑎T

𝑗𝑥 ≤ 𝑏 𝑗 , and then replace 𝑘 by 𝑗 to get the new basis
𝐵 ∪ { 𝑗} \ {𝑘}.

Changing the current basis from 𝐵 to 𝐵∪ { 𝑗} \ {𝑘} is called a pivot step. As soon
as 𝜆 = 1 we have 𝑐𝜆 = 𝑐, at which moment the current basis is optimal for our ob-
jective 𝑐. If at some point no choice of 𝑗 exists, then an unbounded ray has been found.

Definition 2.2.7. We say that the system 𝐴𝑥 ≤ 𝑏 is non-degenerate if 𝑚 ≥ 𝑛, any
𝐵 ∈

( [𝑚]
𝑛

)
is a basis, and every vertex of the corresponding polyhedron 𝑃(𝐴, 𝑏) is

tight at exactly 𝑛 linearly independent inequalities. When the description 𝐴𝑥 ≤ 𝑏 is
clear, we say that 𝑃 = 𝑃(𝐴, 𝑏) is non-degenerate to mean that its describing system
is.

Definition 2.2.8. We say that the shadow of a polyhedron 𝑃 on a two-dimensional
linear subspace 𝑊 is non-degenerate if dim(𝜋𝑊 (𝑃)) = 2 and for every face 𝐹
of 𝑃 such that 𝜋𝑊 (𝐹) is a face of 𝜋𝑊 (𝑃) and dim(𝜋𝑊 (𝐹)) ≤ 1, we have that
dim(𝜋𝑊 (𝐹)) = dim(𝐹).
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Figure 2.2: On the left, a polytope and its shadow. On the right, the corresponding
polar polytope intersected with the plane. There are as many edges marked blue as
there are edges marked red.

If both the polyhedron and the shadow are non-degenerate, each pivot step can
be performed in 𝑂 (𝑚𝑛) time (see the pseudo-code for Algorithm 1). Under the
distribution models we examine, degeneracy occurs with probability 0.

The shadow vertex rule is called as such because the visited vertices are in
correspondence with vertices on the relative boundary of the orthogonal projection
𝜋𝑊 (𝑃) of 𝑃 onto𝑊 = span(𝑑, 𝑐), where we denote 𝜋𝑊 (𝑃) as the shadow of 𝑃 on𝑊 .
See the left half of Figure 2.2. We call the total number of vertices of the projection
the shadow size, and it is the key geometric estimate in our analysis of the simplex
method.

Lemma 2.2.9. For a polyhedron 𝑃 having a non-degenerate shadow on 𝑊 , the
vertices of 𝑃 optimizing objectives in𝑊 \ {®0} are in one-to-one correspondence with
the vertices of 𝜋𝑊 (𝑃) under the map 𝜋𝑊 .

Proof. For every vertex 𝑦 ∈ 𝜋𝑊 (𝑃) of the shadow, there is some 𝜃 ∈ 𝑊 − {®0} that
is uniquely optimized by 𝑦 over 𝜋𝑊 (𝑃), i.e., 𝑦 is optimal for 𝜃, and 𝜃T𝑦 > 𝜃T𝑦′ for
all 𝑦′ ∈ 𝜋𝑊 (𝑃), 𝑦′ ≠ 𝑦. Let 𝐹 ⊆ 𝑃 be the face of optimizers of 𝜃. It must satisfy
𝜋𝑊 (𝐹) = 𝑦, and by non-degeneracy of the shadow, 𝐹 is a vertex.

For a vertex 𝑥 ∈ 𝑃 optimizing 𝜃 ∈ 𝑊 − {®0}, its projection 𝜋𝑊 (𝑥) optimizes 𝜃
over the projection 𝜋𝑊 (𝑃), and hence it lies on the relative boundary of the shadow.
If 𝜋𝑊 (𝑥) is a vertex of 𝜋𝑊 (𝑃), we are done, so suppose not. Then 𝜋𝑊 (𝑥) must lie
in the relative interior of an edge 𝑒 of 𝜋𝑊 (𝑃). We can lift 𝑒 to 𝐹 = 𝜋−1

𝑊 (𝑒) ∩ 𝑃, the
largest face of 𝑃 satisfying 𝜋𝑊 (𝐹) = 𝑒. As the shadow is non-degenerate, 𝐹 is an
edge of 𝑃. Since dim(𝐹) = 1 and 𝜋𝑊 (𝑥) is in the relative interior of 𝑒, we see that 𝑥
is in the relative interior of 𝐹, contradicting our assumption that 𝑥 is a vertex of 𝑃.

From the above arguments, we see that the map 𝜋𝑊 yields a bijection from the
set of vertices of 𝑃 optimizing some objective in 𝑊 − {®0} and the set of vertices of
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𝜋𝑊 (𝑃). The lemma thus follows. □

We will consider non-degenerate polyhedra of the form 𝑃(𝐴) = {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤
®1}, in which case ®0 is always contained in the polyhedron. The problem thus has
a known feasible solution. We will look at the geometry of shadow paths on such
polyhedra from a polar perspective. For any non-degenerate polyhedron 𝑃(𝐴), we
look at the polar polytope, defined as the convex hull 𝑄(𝐴) := conv(𝑎1, . . . , 𝑎𝑚) of
the rows of 𝐴. For any index-set 𝐼 ∈

( [𝑚]
𝑛

)
, if the (unique) solution 𝑥𝐼 to the equations

𝑎𝑖
T𝑥 = 1 ∀𝑖 ∈ 𝐼

is a vertex of the original polyhedron 𝑃(𝐴), then the set conv(𝑎𝑖 : 𝑖 ∈ 𝐼) forms
a facet of the polytope 𝑄(𝐴). Conversely, if conv(𝑎𝑖 : 𝑖 ∈ 𝐼) induces a facet of
𝑄 ′ := conv(®0, 𝑎1, . . . , 𝑎𝑚) (note the inclusion of ®0), then 𝑥𝐼 is a vertex of 𝑃(𝐴). The
addition of ®0 to the polar of 𝑃(𝐴) allows us to detect unboundedness. Precisely, the
facets of the extended polar 𝑄 ′ containing ®0 are in one to one correspondence with
unbounded edges of 𝑃(𝐴). Moreover, 𝑃(𝐴) is bounded, i.e. a polytope, if and only if
®0 is in the interior of 𝑄(𝐴). In this case 𝑄(𝐴) = 𝑄 ′, and hence every facet of 𝑄(𝐴)
is associated to a vertex of 𝑃(𝐴).

In the polar perspective, a pivot step moves from one facet of𝑄 ′ to a neighboring
facet. The shadow vertex algorithm moves the objective 𝑐𝜆 along the line segment
[𝑑, 𝑐] and keeps track of which facet of𝑄 ′ is intersected by the ray 𝑐𝜆R+. If we move
to a facet of 𝑄 ′ containing ®0, we may conclude that the LP with objective 𝑐 is in fact
unbounded. Since we can only visit such facets at the end of a shadow path, we will
be able to control the length of shadow paths using only the geometry of𝑄(𝐴), which
will help simplify our analyses. The main bound on the size of the shadow we will
use is given in the following lemma.

Lemma 2.2.10. Let 𝑃(𝐴) be a non-degenerate polyhedron with a non-degenerate
shadow on𝑊 . Then

|vertices(𝜋𝑊 (𝑃(𝐴))) | ≤ |edges(𝑄(𝐴) ∩𝑊) |.

Proof. Let 𝑥 ′ be a vertex of 𝜋𝑊 (𝑃). To prove the statement, we will associate 𝑥 ′with a
unique edge of𝑄(𝐴) ∩𝑊 . By non-degeneracy of the shadow and Lemma 2.2.9, there
exists a unique vertex 𝑥 of 𝑃(𝐴) such that 𝜋𝑊 (𝑥) = 𝑥 ′. By non-degeneracy of 𝑃(𝐴),
there exists a unique basis 𝐼 ∈

( [𝑚]
𝑛

)
such that 𝑥 = 𝑥𝐼 := 𝐴−1

𝐼
®1𝐼 . By virtue of 𝑥 ′ being a

vertex of 𝜋𝑊 (𝑃(𝐴)), since dim(𝜋𝑊 (𝑃(𝐴))) = 2 there must an objective 𝜃 ∈ 𝑊 −{®0}
that is uniquely maximized by 𝑥 ′ on 𝜋𝑊 (𝑃(𝐴)). Consequently, by construction 𝑥
also uniquely maximizes 𝜃 over 𝑃(𝐴). We now show that 𝜃T𝐴−1

𝐼 > ®0. Firstly, since
𝑥𝐼 maximizes 𝜃, by non-degeneracy of 𝑃(𝐴), we must have that 𝜃T𝐴−1

𝐼 ≥ ®0. Now
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assume for the sake of contradiction that (𝜃T𝐴−1
𝐼 )𝑖 = 0 for some 𝑖 ∈ [𝑛]. In this

case, by non-degeneracy of 𝑃(𝐴), we can pivot such that 𝑖 leaves the basis and find
an edge of 𝑃(𝐴) that is optimal for 𝜃, and thus that also projects to 𝑥 ′. This violates
non-degeneracy of the shadow, and so we must have 𝜃T𝐴−1

𝐼 > ®0 as claimed.
The condition that 𝜃T𝐴−1

𝐼 > ®0 is equivalent to the existence of 𝛾𝑖 > 0, for 𝑖 ∈ 𝐼,
and 𝛼 > 0, such that ∑

𝑖∈𝐼
𝛾𝑖𝑎𝑖 = 𝜃,

∑
𝑖∈𝐼

𝛾𝑖 = 𝛼,

which is equivalent to ∑
𝑖∈𝐼
(𝛾𝑖/𝛼)𝑎𝑖 = 𝛼−1𝜃,

∑
𝑖∈𝐼

𝛾𝑖/𝛼 = 1.

The ray 𝜃R+ intersects conv(𝑎𝑖)𝑖∈𝐼 . Since the inequalities are strict, there is a
neighborhood around 𝜃 in which every vector 𝜃 ′ induces a ray intersecting conv(𝑎𝑖)𝑖∈𝐼 .
In particular, we get that 𝜃R+ intersects the relative interior of conv(𝑎𝑖)𝑖∈𝐼 .

Recalling that 𝑥𝐼 is a vertex of a non-degenerate polytope 𝑃(𝐴) and that 𝑏 = ®1,
we have that 𝑎𝑖T𝑥𝐼 ≤ 1 for all 𝑖 ≤ 𝑚, where equality holds iff 𝑖 ∈ 𝐼. Therefore the
points in conv(𝑎𝑖)𝑖∈𝐼 are the maximizers of 𝑥𝐼 , when maximizing over 𝑄(𝐴). This
means that conv(𝑎𝑖)𝑖∈𝐼 forms a facet of 𝑄(𝐴). As conv(𝑎𝑖)𝑖∈𝐼 is intersected by 𝜃R+
in its relative interior, the intersection conv(𝑎𝑖)𝑖∈𝐼 ∩𝑊 can not be zero-dimensional.
If conv(𝑎𝑖)𝑖∈𝐼 ∩ 𝑊 were two-dimensional, the origin would be contained in the
affine hull of conv(𝑎𝑖)𝑖∈𝐼 and hence 0 = ®0T𝑥𝐼 = 1. Thus conv(𝑎𝑖)𝑖∈𝐼 ∩𝑊 must be
one-dimensional and hence an edge of 𝑄(𝐴) ∩𝑊 .

For a feasible basis 𝐼, the facet conv(𝑎𝑖)𝑖∈𝐼 uniquely determines 𝑥𝐼 and hence 𝑥 ′. If
two facets conv(𝑎𝑖)𝑖∈𝐼 and conv(𝑎 𝑗) 𝑗∈𝐽 of𝑄, where 𝐼 and 𝐽 are feasible bases, induce
the same edge 𝑒 of𝑄∩𝑊 , then 𝑒 passes through the relative interior of both facets by
the argument in the previous paragraph. If two faces intersect in their relative interior,
they must be equal. For suppose not. Then we could, without loss of generality, find
some 𝑥 ∈ conv(𝑎𝑖)𝑖∈𝐼 and 𝑦 in the relative interior of conv(𝑎𝑖)𝑖∈𝐼∩conv(𝑎 𝑗) 𝑗∈𝐽 . Then
there is some 0 < 𝜆 < 1 such that 𝜆𝑥 + (1 − 𝜆)𝑦 ∈ conv(𝑎 𝑗) 𝑗∈𝐽 , so 𝑥 ∈ conv(𝑎 𝑗) 𝑗∈𝐽 .
Since 𝑥 was arbitrary, conv(𝑎 𝑗) 𝑗∈𝐼 = conv(𝑎 𝑗) 𝑗∈𝐽 . By non-degeneracy of 𝑃(𝐴),
equality of conv(𝑎𝑖)𝑖∈𝐼 and conv(𝑎 𝑗) 𝑗∈𝐽 implies that 𝐼 = 𝐽. We thus conclude that
the above mapping from vertices of 𝜋𝑊 (𝑃(𝐴)) to edges of 𝑄 ∩𝑊 is injective. □

The number of pivot steps taken in a shadow path is bounded from above by the
number of edges in the intersection 𝑄(𝐴) ∩ span(𝑑, 𝑐). Hence it suffices that we
prove an upper bound on this geometric quantity. The following theorem summarizes
the properties we will use of the shadow vertex algorithm.

Theorem 2.2.11. Let 𝑃(𝐴, 𝑏) denote a non-degenerate polyhedron. Let 𝑐, 𝑑 ∈ R𝑛 de-
note two objectives inducing a non-degenerate shadow and let𝑊 = span(𝑑, 𝑐). Given
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a feasible basis 𝐼 ∈
( [𝑚]
𝑛

)
for 𝐴𝑥 ≤ 𝑏 which is optimal for 𝑑, Algorithm 1 (shadow

vertex) finds a feasible basis 𝐽 ∈
( [𝑚]
𝑛

)
optimal for 𝑐 or declares unboundedness in a

number of pivot steps bounded by |vertices(𝜋𝑊 (𝑃(𝐴))) |, where 𝜋𝑊 is the orthogonal
projection onto𝑊 . In particular, when 𝑏 = ®1, the number of pivots is at most

|edges(𝑄(𝐴) ∩𝑊) | .

Proof. We first establish that 𝜆𝑖 and 𝑠𝑖 are well-defined. We know that the set of 𝜆 ≤ 1
such that 𝑐T

𝜆𝐴
−1
𝐵 ≥ ®0 is non-empty, because 𝜆𝑖−1 satisfies this property. The set of

𝑠 > 0 such that 𝐴(𝑥𝐵− 𝑠𝐴−1
𝐵 𝑒𝑘) ≤ 𝑏 is non-empty because if 𝐴(𝑥𝐵− 𝑠𝐴−1

𝐵 𝑒𝑘) ≰ 𝑏 for
all 𝑠 > 0 then the vertex 𝑥𝐵 would be tight at more than 𝑑 inequalities, contradicting
non-degeneracy of 𝑃(𝐴).

To show correctness, we prove that, in every iteration of the loop, the basis 𝐵 is
feasible, that the algorithm terminates, and that the output is correct. For this we first
prove that in every iteration 𝑥𝐵 is a shadow vertex.

If 𝜆𝑖 ≠ 1, there must be some index 𝑘 such that (𝑐T
𝜆𝑖
𝐴−1
𝐵 )𝑘 = 0. Since each of the

points (𝑥𝐵 − 𝑠𝐴−1
𝐵 𝑒𝑘) with 𝑠 ≤ 𝑠𝑖 is feasible, if the index 𝑗 exists then 𝐵∪{ 𝑗}− {𝑘} is

a feasible basis. We know that 𝑐𝜆𝑖 is a non-negative combination of rows of 𝐴𝐵−{𝑘 },
so it is also a non-negative combination of rows of 𝐴𝐵∪{ 𝑗 }−{𝑘 }. Thus 𝐵 ∪ { 𝑗} − {𝑘}
is optimal for 𝑐𝜆𝑖 , and hence 𝑥𝐵∪{ 𝑗 }−{𝑘 } is a shadow vertex by Lemma 2.2.9, using
the non-degeneracy of the shadow.

From our non-degeneracy conditions it follows that 𝑘 is unique. Suppose it were
not. The set 𝑃(𝐴) ∩ {𝑥 : 𝐴𝐵−{𝑘,𝑘′ }𝑥 = 𝑏𝐵−{𝑘,𝑘′ }} would be a two-dimensional face
of 𝑃(𝐴) optimizing the objective 𝑐𝜆𝑖 , and hence this face would project to an at most
one-dimensional face of 𝜋𝑊 (𝑃(𝐴)). This contradicts non-degeneracy of the shadow,
so 𝑘 is unique.

Now we prove that the algorithm has the runtime that was claimed. We do this
by proving that no shadow vertex is visited by the algorithm twice.

Since at the start of a loop 𝑐T
𝜆𝑖
𝐴−1
𝐵 ≥ ®0, we know from maximality of 𝜆𝑖+1 that

𝜆𝑖+1 ≥ 𝜆𝑖 . Suppose that 𝜆𝑖+1 = 𝜆𝑖 < 1 for 𝑖 ≥ 1. This implies that

max{𝜆 : 𝑐T
𝜆𝐴
−1
𝐵 ≥ ®0} = max{𝜆 : 𝑐T

𝜆𝐴
−1
𝐵∪{ 𝑗 }−{𝑘 } ≥ ®0}.

Either one of the two sets is a singleton set or we find linearly independent objectives
𝜃, 𝜃 ′ ∈ 𝑊 − {®0} that are both optimized by both 𝑥𝐵 and 𝑥𝐵∪{ 𝑗 }−{𝑘 }. One of the
two sets being a singleton set contradicts non-degeneracy of the shadow, because
otherwise one of the shadow vertices 𝑥𝐵, 𝑥𝐵∪{ 𝑗 }−{𝑘 } would not have an objective
in 𝑊 that it uniquely optimizes, contradicting 𝜋𝑊 (𝑥𝐵) and 𝜋𝑊 (𝑥𝐵∪{ 𝑗 }−{𝑘 }) being
vertices of 𝜋𝑊 (𝑃(𝐴)). If linearly independent objectives 𝜃, 𝜃 ′ ∈ 𝑊 − {®0} are both
optimized by distinct vertices 𝑥𝐵 and 𝑥𝐵∪{ 𝑗 }−{𝑘 }, the two vertices must project to the
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same point in 𝑊 , contradicting non-degeneracy of the shadow. Hence 𝜆𝑖+1 ≠ 𝜆𝑖 and
𝜆𝑖+1 > 𝜆𝑖 .

Since for any 𝜆 > 𝜆𝑖+1, 𝑐T
𝜆𝐴
−1
𝐵 ≱

®0, no shadow vertex can be visited twice. This
implies no basis is visited twice, and hence the algorithm terminates.

Every pivot step taken by the algorithm starts at a shadow vertex, and no two
pivot steps start at the same vertex. The number of pivot steps is hence bounded by
the number of shadow vertices. Using non-degeneracy of the shadow, this is bounded
by |vertices(𝜋𝑊 (𝑃(𝐴))) |. By Lemma 2.2.10, if 𝑏 = ®1 then the number of pivot steps
is bounded by |edges(𝑄(𝐴) ∩𝑊) |.

Now we show that the output is correct. Suppose that the algorithm returns a
basis 𝐵. From the above we know that 𝐵 is feasible. The choice of 𝜆𝑖 is such that
𝑐T
𝜆𝑖
𝐴−1
𝐵 ≥ ®0, so when 𝜆𝑖 = 1 the basis 𝐵 is indeed optimal for 𝑐1 = 𝑐.

Now suppose the algorithm returns unbounded, so the ray 𝑥𝐵 + (−𝐴−1
𝐵 𝑒𝑘)R+ is

feasible. We want to show that 𝑐(−𝐴−1
𝐵 𝑒𝑘) > 0. Since 𝑐𝜆 = 𝑑 + 𝜆(𝑐 − 𝑑) and 𝜆𝑖

is max{𝜆 : 𝑐𝜆𝐴−1
𝐵 ≥ 0}, we have (𝑐 − 𝑑)T𝐴−1

𝐵 𝑒𝑘 < 0 from uniqueness of 𝑘 , for
otherwise 𝜆𝑖 would not be maximal. Since 𝜆𝑖 < 1 we get

𝑐(−𝐴−1
𝐵 𝑒𝑘) = (𝑐𝜆𝑖 + (1 − 𝜆𝑖)(𝑐 − 𝑑)) (−𝐴−1

𝐵 𝑒𝑘) = (1 − 𝜆𝑖) (𝑐 − 𝑑)(−𝐴−1
𝐵 𝑒𝑘) > 0,

so the algorithm correctly returns unbounded. □

2.3 Smoothed Complexity of the Convex Hull

The convex hull of 𝑚 points in R2 is a polygon and can have up to 𝑚 vertices. If
each point is randomly distributed, the expected number of vertices can be smaller.
In this chapter we prove that if points 𝑎1, . . . , 𝑎𝑚 ∈ R2, each of norm at most 1, are
perturbed with independent Gaussian random noise of standard deviation 𝜎, then the
convex hull of the perturbed points has𝑂 (𝜎−1 +

√
log𝑚) vertices in expectation. The

general proof strategy will be used and extended in the next chapter as well.

Theorem 2.3.1. For independently distributed points 𝑎1, . . . 𝑎𝑚 ∈ R2, each with
independent Gaussian distributed entries of variance 𝜎2 and ‖E[𝑎𝑖] ‖ ≤ 1 for all
𝑖 ∈ [𝑚], the convex hull 𝑄 := conv(𝑎1, . . . , 𝑎𝑚) has 𝑂 (𝜎−1 +

√
log𝑚) edges in

expectation.

To prove the above theorem, we first need a small lemma.

Lemma 2.3.2. Let 𝑋 ∈ R be a random variable with E [𝑋] = 𝜇 and Var(𝑋) = 𝜏2.
Then 𝑋 satisfies

E
[
𝑋2]

E [|𝑋 |] ≥ (|𝜇 | + 𝜏)/2.



40 2. Smoothed Analysis of the Simplex Method

Proof. By definition one has E
[
𝑋2] = 𝜇2 + 𝜏2. We will show that E [|𝑋 |] ≤ |𝜇 | + 𝜏

so that we can use the fact that 𝜇2 + 𝜏2 ≥ 2|𝜇 |𝜏 to derive that 𝜇2 + 𝜏2 ≥ (|𝜇 | + 𝜏)2/2.
It then follows that E

[
𝑋2] /E [|𝑋 |] ≥ (|𝜇 | + 𝜏)/2.

The expected absolute value E[|𝑋 |] satisfies

E [|𝑋 |] ≤ |𝜇 | + E [|𝑋 − 𝜇 |] ≤ |𝜇 | + E
[
(𝑋 − 𝜇)2

]1/2

by Cauchy-Schwarz, hence E [|𝑋 |] ≤ |𝜇 | + 𝜏. □

Proof of Theorem 2.3.1. We will prove that, on average, the edges of 𝑄 are long and
the perimeter of 𝑄 is small. This is sufficient to bound the expected number of edges.

For 𝑖, 𝑗 ∈ [𝑚], 𝑖 ≠ 𝑗 , let 𝐸𝑖, 𝑗 denote the event that 𝑎𝑖 and 𝑎 𝑗 are the end points of
an edge of 𝑄. By linearity of expectation we have the following equality:

E[perimeter(𝑄)] =
∑

1≤𝑖< 𝑗≤𝑚
E[‖𝑎𝑖 − 𝑎 𝑗 ‖ | 𝐸𝑖, 𝑗] Pr[𝐸𝑖, 𝑗] .

We lower bound the right-hand side by taking the minimum over all conditional
expectations and get∑
1≤𝑖< 𝑗≤𝑚

E[‖𝑎𝑖 − 𝑎 𝑗 ‖ | 𝐸𝑖, 𝑗] Pr[𝐸𝑖, 𝑗] ≥ min
𝑘≠𝑙

E[‖𝑎𝑘 − 𝑎𝑙 ‖ | 𝐸𝑘,𝑙]
∑

1≤𝑖< 𝑗≤𝑚
Pr[𝐸𝑖, 𝑗] .

Dividing on both sides, we can estimate the expected number of edges

E[|edges(𝑄) |] =
∑

1≤𝑖< 𝑗≤𝑚
Pr[𝐸𝑖, 𝑗] ≤

E[perimeter(𝑄)]
min𝑘≠𝑙 E[‖𝑎𝑘 − 𝑎𝑙 ‖ | 𝐸𝑘,𝑙]

. (2.12)

We are left to bound the numerator and denominator on the right-hand side. For
the first, we observe that 𝑄 is convex and thus has perimeter at most that of any
containing disc. This yields the bound

E[perimeter(𝑄)] ≤ E[2𝜋max
𝑖
‖𝑎𝑖 ‖] ≤ 2𝜋(1 + 6𝜎

√
log𝑚), (2.13)

using the traingle inequality and standard Gaussian tail bounds.
We are left to lower bound the denominator. Fix 𝑘 = 1, 𝑙 = 2 without loss of

generality and write 𝐸 = 𝐸1,2. The quantity of interest is

E[‖𝑎1 − 𝑎2‖ | 𝐸] =
∫
R2

∫
R2 ‖𝑎1 − 𝑎2‖ Pr[𝐸]𝜇1(𝑎1)𝜇2(𝑎2) d𝑎1 d𝑎2∫
R2

∫
R2 Pr[𝐸]𝜇1(𝑎1)𝜇2(𝑎2) d𝑎1 d𝑎2

(2.14)

where 𝜇𝑖 is the probability density of 𝑎𝑖 and the probability of 𝐸 = 𝐸1,2(𝑎1, . . . , 𝑎𝑛)
is taken over the randomness in 𝑎3, 𝑎4, . . . , 𝑎𝑚. To get control on the event 𝐸 , we
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perform a change of coordinates from 𝑎1, 𝑎2 ∈ R2 to 𝑡 ∈ [0,∞], 𝜃 ∈ S1, ℎ1, ℎ2 ∈ R
satisfying

𝑎1 = 𝑡𝜃 + 𝑅𝜃 (ℎ1)
𝑎2 = 𝑡𝜃 + 𝑅𝜃 (ℎ2)

where 𝑅𝜃 : R→ 𝜃⊥ is the isometric linear embedding of R into the linear subspace
orthogonal to 𝜃 with 𝑅𝜃 (1) having positive first coordinate. This transformation is
uniquely defined and continuous whenever 𝑎1 and 𝑎2 are linearly independent and 𝜃
has non-zero first coordinate, which happens with probability 1. The Jacobian of this
transformation is |ℎ1 − ℎ2 | and we can rewrite the above fraction (2.14) as∫ ∞

0

∫
S1

∫ ∞
−∞

∫ ∞
−∞ |ℎ1 − ℎ2 |2 Pr[𝐸]𝜇1(𝑡𝜃 + 𝑅𝜃 (ℎ1))𝜇2(𝑡𝜃 + 𝑅𝜃 (ℎ2)) dℎ1 dℎ2 d𝜃 d𝑡∫ ∞

0

∫
S1

∫ ∞
−∞

∫ ∞
−∞ |ℎ1 − ℎ2 | Pr[𝐸]𝜇1(𝑡𝜃 + 𝑅𝜃 (ℎ1))𝜇2(𝑡𝜃 + 𝑅𝜃 (ℎ2)) dℎ1 dℎ2 d𝜃 d𝑡

.

The event 𝐸 is equivalent to asking that either 𝜃T𝑎𝑖 ≤ 𝑡 for all 𝑖 = 3, 4, . . . , 𝑚 or
𝜃T𝑎𝑖 ≥ 𝑡 for all 𝑖 = 3, 4, . . . , 𝑚. This makes 𝐸 a function of only 𝑎3, . . . , 𝑎𝑛 and 𝜃
and 𝑡, i.e. its value does not depend on ℎ1, ℎ2.

Now, we use that
∫
𝑔 (𝑝)ℎ (𝑝) d𝑝∫
𝑔 (𝑝) d𝑝 ≥ inf 𝑝 ℎ(𝑝) for any positive integrable 𝑔, ℎ and

find

E[‖𝑎1 − 𝑎2‖ |𝐸] ≥ inf
𝑡 , 𝜃

∫ ∞
−∞

∫ ∞
−∞ |ℎ1 − ℎ2 |2𝜇1(𝑡𝜃 + 𝑅𝜃 (ℎ1))𝜇2(𝑡𝜃 + 𝑅𝜃 (ℎ2)) dℎ1 dℎ2∫ ∞

−∞
∫ ∞
−∞ |ℎ1 − ℎ2 |𝜇1(𝑡𝜃 + 𝑅𝜃 (ℎ1))𝜇2(𝑡𝜃 + 𝑅𝜃 (ℎ2)) dℎ1 dℎ2

= inf
𝑡 , 𝜃

∫ ∞
−∞ 𝑧

2
(∫ ∞
−∞ 𝜇1(𝑅𝜃 (ℎ1))𝜇2(𝑅𝜃 (ℎ1 − 𝑧)) dℎ1

)
d𝑧∫ ∞

−∞ |𝑧 |
(∫ ∞
−∞ 𝜇1(𝑅𝜃 (ℎ1))𝜇2(𝑅𝜃 (ℎ1 − 𝑧)) dℎ1

)
d𝑧
,

substituting 𝑧 = ℎ1−ℎ2 and simplifying. For fixed 𝑡, 𝜃, we can reinterpret the last frac-
tion as E[𝑍2]/E[|𝑍 |] for 𝑍 a random variable with probability density proportional
to ∫ ∞

−∞
𝜇1(𝑅𝜃 (ℎ1))𝜇2(𝑅𝜃 (ℎ1 − 𝑧)) dℎ1.

This is the same probability density as that of the difference of two independent
Gaussian random variables each of variance 𝜎2, which means that 𝑍 has variance
2𝜎2. If we apply Lemma 2.3.2 to 𝑍 , we deduce E[‖𝑎1 − 𝑎2‖ | 𝐸] ≥ 𝜎/

√
2. We

conclude that the expected total number of edges is bounded from above by

E[edges(𝑄)] ≤ 2𝜋
1 + 6𝜎

√
log𝑚

𝜎/
√

2
≤ 9𝜎−1 + 54

√
log𝑚. □
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2.4 Shadow Bounds

In this section, we derive our new and improved shadow bounds for Laplace and
Gaussian distributed perturbations. We achieve these results by first proving a shadow
bound for parametrized distributions as described in the next section, and then spe-
cializing to the case of Laplace and Gaussian perturbations. The bounds we obtain
are described below.

Theorem 2.4.1. Let 𝑊 ⊆ R𝑛 be a fixed two-dimensional subspace, 𝑚 ≥ 𝑛 ≥ 3 and
let 𝐴 ∈ R𝑚×𝑛 be a matrix with rows 𝑎1, . . . , 𝑎𝑚 ∈ R𝑛, such that the entries of 𝐴 are
independent Gaussian random variables with variance 𝜎2 and such that ‖E[𝑎𝑖] ‖ ≤ 1
for every 𝑖 = 1, . . . , 𝑚. Writing 𝑄(𝐴) := conv(𝑎1, . . . , 𝑎𝑚) for the convex hull of the
row vectors, we find that the expected number of edges is bounded by

E[|edges(𝑄(𝐴) ∩𝑊) |] ≤ D𝑔 (𝑛, 𝑚, 𝜎)

where D𝑔 (𝑛, 𝑚, 𝜎) is defined as

D𝑔 (𝑛, 𝑚, 𝜎) = 𝑂 (𝑛2√log𝑚 𝜎−2 + 𝑛2.5 log𝑚 𝜎−1 + 𝑛2.5 log(𝑚)1.5).

Our bound applies more generally for distributions satisfying certain parameters.
We illustrate this with a shadow bound for perturbations distributed according to the
Laplace distribution. This will serve as a good warm-up exercise for the slightly more
involved analysis of the Gaussian distribution.

Theorem 2.4.2. Let 𝑊 ⊆ R𝑛 be a fixed two-dimensional subspace, 𝑚 ≥ 𝑛 ≥ 3 and
let 𝐴 ∈ R𝑚×𝑛 be a matrix with rows 𝑎1, . . . , 𝑎𝑚 ∈ R𝑛, such that the entries of 𝐴 are
independent Laplace random variables with parameter 𝜎 and such that ‖E[𝑎𝑖] ‖ ≤ 1
for every 𝑖 = [𝑚]. Writing 𝑄(𝐴) := conv(𝑎1, . . . , 𝑎𝑚) for the convex hull of the row
vectors, we find that the expected number of edges is bounded by

E[|edges(𝑄(𝐴) ∩𝑊) |] ≤ 𝑂 (𝑛2.5𝜎−2 + 𝑛3 log𝑚 𝜎−1 + 𝑛3 log(𝑚)2).

The proofs of Theorems 2.4.1 and 2.4.2 are given in respectively subsections 2.4.3
and 2.4.2.

2.4.1 Parametrized Shadow Bound

In this section, we prove a shadow bound theorem for any noise distribution that has
non-trivial bounds on certain parameters. The parameters we will use are defined
below.
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Distribution parameters

Definition 2.4.3. A distribution with density 𝜇 on R𝑛 is 𝐿-log-Lipschitz if for all
𝑥, 𝑦 ∈ R𝑛 we have |log(𝜇(𝑥)) − log(𝜇(𝑦)) | ≤ 𝐿‖𝑥 − 𝑦‖. Equivalently, 𝜇 is 𝐿-log-
Lipschitz if 𝜇(𝑥)/𝜇(𝑦) ≤ exp(𝐿‖𝑥 − 𝑦‖) for all 𝑥, 𝑦 ∈ R𝑛.

Definition 2.4.4. Given a probability distribution with density 𝜇 on R𝑛, we define
the line variance 𝜏2 as the infimum of the variances when restricted to any fixed line
𝑙 ⊆ R𝑛:

𝜏2 = inf
line 𝑙 ⊆ R𝑛

Var(𝑋 ∼ 𝜇 | 𝑋 ∈ 𝑙).

Both the log-Lipschitz constant and the minimal line variance relate to how
“spread out” the probability mass is. The log-Lipschitzness of a random variable
gives a lower bound on the line variance, which we prove in Lemma 2.4.7.

Definition 2.4.5. Given a distribution with probability density 𝜇 on R𝑛 with expecta-
tion E𝑋∼𝜇 [𝑋] = 𝑦 we define the 𝑚th-th deviation 𝑟𝑚 to be the smallest number such
that for any unit vector 𝜃 ∈ R𝑛,∫ ∞

𝑟𝑚

Pr
𝑋∼𝜇
[| (𝑋 − 𝑦)T𝜃 | ≥ 𝑡] d𝑡 ≤ 𝑟𝑚/𝑚.

Note that as 𝑟𝑚 increases to ∞, the left-hand side goes to 0 and the right-hand side
goes to ∞. We see that there must exist a number satisfying this inequality, so 𝑟𝑚 is
well-defined.

The 𝑛-th deviation will allow us to give bounds on the expected maximum size
E[max𝑖≤𝑚 |𝑥𝑖T𝜃 |] of 𝑚 separate perturbations in a given direction 𝜃. We formalize
this in Lemma 2.4.8.

Definition 2.4.6. Given a distribution with probability density 𝜇 on R𝑛 with expecta-
tion E𝑥∼𝜇 [𝑥] = 𝑦, we define, for all 1 > 𝑝 > 0, the cutoff radius 𝑅(𝑝) as the smallest
number satisfying

Pr
𝑥∼𝜇
[‖𝑥 − 𝑦‖ ≥ 𝑅(𝑝)] ≤ 𝑝.

The cutoff radius of interest is 𝑅𝑚,𝑛 := 𝑅( 1
𝑛(𝑚𝑛)
). The cutoff radius tells us

how concentrated the probability mass of the random variable is, while the log-
Lipschitzness tells us how spread out the probability mass is. These quantities
cannot both be arbitrarily good (small) at the same time. We formalize this notion in
Lemma 2.4.9.

Lemma 2.4.7. If a distribution with probability density 𝜇 is 𝐿-log-Lipschitz, then its
line variance satisfies 𝜏 ≥ 1/(√𝑒𝐿).
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Proof. Let 𝑣 + 𝑤R be a line and assume that E[𝑥 | 𝑥 ∈ 𝑣 + 𝑤R] = 𝑣 and ‖𝑤‖ = 1.
We show that with probability at least 1/𝑒, 𝑥 has distance at least 1/𝐿 from 𝑣.
Conditioning on 𝑥 ∈ 𝑣 + 𝑤R, the induced probability mass is proportional to 𝜇(𝑥).
We can bound the fraction of the induced probability mass that is far away from the
expectation by the following calculation:∫ ∞

−∞
𝜇(𝑣 + 𝛾𝑤) d𝛾 =

∫ 0

−∞
𝜇(𝑣 + 𝛾𝑤) d𝛾 +

∫ ∞

0
𝜇(𝑣 + 𝛾𝑤) d𝛾

=
∫ −1/𝐿

−∞
𝜇(𝑣 + (𝛾 + 1/𝐿)𝑤) d𝛾 +

∫ ∞

1/𝐿
𝜇(𝑣 + (𝛾 − 1/𝐿)𝑤) d𝛾

≤ 𝑒
∫ −1/𝐿

−∞
𝜇(𝑣 + 𝛾𝑤) d𝛾 + 𝑒

∫ ∞

1/𝐿
𝜇(𝑣 + 𝛾𝑤) d𝛾.

The integral on the first line exists because it is the integral of a continuous non-
negative function, and, if the integral were infinite, then the integral along every
parallel line would be infinite by log-Lipschitzness, contradicting the fact that 𝜇 has
integral 1 over R𝑛.

Hence,

Pr[‖𝑥 − 𝑣‖ ≥ 1/𝐿 | 𝑥 ∈ 𝑣 +𝑤R] =

∫ −1/𝐿
−∞ 𝜇(𝑣 + 𝛾𝑤) d𝛾 +

∫ ∞
1/𝐿 𝜇(𝑣 + 𝛾𝑤) d𝛾∫ ∞

−∞ 𝜇(𝑣 + 𝛾𝑤) d𝛾
≥ 1/𝑒,

and we can lower bound the variance

Var(𝑥 | 𝑥 ∈ 𝑣 + 𝑤R) ≥ 1
𝑒
(1/𝐿)2.

Since the line 𝑣 + 𝑤R was arbitrary, it follows that 𝜏 ≥ 1/(√𝑒𝐿). □

Lemma 2.4.8. If 𝑥1, . . . , 𝑥𝑚 are each distributed with mean ®0 and 𝑚-th deviation at
most 𝑟𝑚, then for any 𝜃 ∈ S𝑛−1,

E[max
𝑖∈[𝑚]
|𝜃T𝑥𝑖 |] ≤ 2𝑟𝑚.

Proof. We rewrite the expectation as

E[max
𝑖∈[𝑚]
|𝜃T𝑥𝑖 |] =

∫ ∞

0
Pr[max

𝑖∈[𝑚]
|𝜃T𝑥𝑖 | ≥ 𝑡] d𝑡.

We separately bound the integral up to 𝑟𝑚 and from 𝑟𝑚 to ∞. Since a probability is
at most 1 we have ∫ 𝑟𝑚

0
Pr[max

𝑖∈[𝑚]
|𝜃T𝑥𝑖 | ≥ 𝑡] d𝑡 ≤ 𝑟𝑚,
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and by definition of the 𝑛-th deviation and the union bound:∫ ∞

𝑟𝑚

Pr[max
𝑖∈[𝑚]
|𝜃T𝑥𝑖 | ≥ 𝑡] d𝑡 ≤

∑
𝑖∈[𝑚]

∫ ∞

𝑟𝑚

Pr[|𝜃T𝑥𝑖 | ≥ 𝑡]

≤ 𝑟𝑚.

Together these estimates yield the desired inequality,

E[max
𝑖≤𝑚
|𝜃T𝑥𝑖 |] ≤ 2𝑟𝑚. □

Lemma 2.4.9. For a 𝑛-dimensional distribution with probability density 𝜇, where
𝑛 ≥ 3, with parameters 𝐿, 𝑅 as described above, we have 𝐿𝑅(1/2) ≥ 𝑛/3.

Proof. Let �̄� := 𝑅(1/2). If 𝐿�̄� ≥ 𝑛, we are already done, so we may assume that
𝐿�̄� < 𝑛. Also, without loss of generality, we may assume that 𝜇 has mean ®0. For
𝛼 > 1 to be chosen later we know

1 ≥
∫
𝛼�̄�B𝑛

2

𝜇(𝑥) d𝑥

= 𝛼𝑛
∫
�̄�B𝑛

2

𝜇(𝛼𝑥) d𝑥

≥ 𝛼𝑛𝑒−(𝛼−1)𝐿�̄�
∫
�̄�B𝑛

2

𝜇(𝑥) d𝑥

=
𝛼𝑛

2
𝑒−(𝛼−1)𝐿�̄� .

Taking logarithms, we find

0 ≥ 𝑛 log(𝛼) − (𝛼 − 1)𝐿�̄� − log(2).

We choose 𝛼 = 𝑛
𝐿�̄�

> 1 and look at the resulting inequality:

0 ≥ 𝑛 log( 𝑛
𝐿�̄�
) − 𝑛 + 𝐿�̄� − log(2).

For 𝑛 ≥ 3, this inequality can only hold if 𝐿�̄� ≥ 𝑛/3, as needed. □

Proving a shadow bound for parametrized distributions

The main result of this subsection is the following parametrized shadow bound.
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Theorem 2.4.10 (Parametrized Shadow Bound). Let 𝑎1, . . . , 𝑎𝑚 ∈ R𝑛, where 𝑚 ≥
𝑛 ≥ 3, be independently distributed according to 𝐿-log-Lipschitz distributions with
centers of norm at most 1, line variances at least 𝜏2, cutoff radii at most 𝑅𝑚,𝑛 and
𝑚-th deviations at most 𝑟𝑚. For any fixed two-dimensional linear subspace𝑊 ⊆ R𝑛,
the expected number of edges satisfies

E[|edges(𝑄(𝐴) ∩𝑊) |] ≤ 𝑂 ( 𝑛
1.5𝐿

𝜏
(1 + 𝑅𝑚,𝑛) (1 + 𝑟𝑚)).

The proof is given at the end of the subsection. It will be derived from the
sequence of lemmas given below. We refer the reader to section 2.1.3 for a high-level
overview of the proof.

In the rest of the subsection, 𝑎1, . . . , 𝑎𝑚 ∈ R𝑛, where 𝑚 ≥ 𝑛 ≥ 3, will be as in
Theorem 2.4.10. We use 𝑄(𝐴) := conv(𝑎1, . . . , 𝑎𝑚) to denote the convex hull of
the rows 𝑎1, . . . , 𝑎𝑚 of the constraint matrix 𝐴 and𝑊 to denote the two-dimensional
shadow plane.

The following non-degeneracy conditions on 𝑎1, . . . , 𝑎𝑚will hold with probability
1, because 𝑎1, . . . , 𝑎𝑚 are independently distributed with continuous distributions.

1. Every 𝑛+1 vectors from 𝑎1, . . . , 𝑎𝑚 are affinely independent. Thus, every facet
of 𝑄(𝐴) is the convex hull of exactly 𝑛 vectors from 𝑎1, . . . , 𝑎𝑚.

2. Any 𝑛 distinct vectors 𝑎𝑖1 , . . . , 𝑎𝑖𝑛 , 𝑖1, . . . , 𝑖𝑛 ∈ [𝑚], have a unique hyperplane
through them. This hyperplane intersects 𝑊 in a one-dimensional line, does
not contain the origin ®0, and its unit normal vector pointing away from the
origin is not −𝑒1. Note that the last two conditions imply that the coordinate
transformation on 𝑎𝑖1 , . . . , 𝑎𝑖𝑛 is uniquely defined with 𝑒1 as reference vector.

3. For every edge 𝑒 ⊆ 𝑄(𝐴) ∩ 𝑊 there is a unique facet 𝐹 of 𝑄(𝐴) such that
𝑒 = 𝐹 ∩𝑊 .

In what follows we will always assume the above conditions hold.
For our first lemma, in which we bound the number of edges in terms of two

different expected lengths, we make a distinction between possible edges with high
probability of appearing versus edges with low probability of appearing. The sets
with probability at most 2

(𝑚
𝑛

)−1 to form an edge, together contribute at most 2 to the
expected number of edges, as there are only

(𝑚
𝑛

)
bases.

For a basis with probability at least 2
(𝑚
𝑛

)−1 of forming an edge, we can safely
condition on it forming an edge without forcing very unlikely events to happen.
Because of this, we will later be able to condition on the vertices not being too far
apart.
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Definition 2.4.11. For 𝐼 ∈
( [𝑚]
𝑛

)
, let 𝐸𝐼 denote the event that conv(𝑎𝑖 : 𝑖 ∈ 𝐼) ∩𝑊

forms an edge of 𝑄(𝐴) ∩𝑊 .

Definition 2.4.12. We define the set 𝐵 ⊆
( [𝑚]
𝑛

)
to be the set of those 𝐼 ⊆ [𝑚]

satisfying |𝐼 | = 𝑛 and Pr[𝐸𝐼 ] ≥ 2
(𝑚
𝑛

)−1.

The next lemma is inspired by Theorem 3.2 of [121].

Lemma 2.4.13. The expected number of edges in 𝑄(𝐴) ∩𝑊 satisfies

E[|edges(𝑄(𝐴) ∩𝑊) |] ≤ 2 + E[perimeter(𝑄(𝐴) ∩𝑊)]
min𝐼 ∈𝐵 E[length(conv(𝑎𝑖 : 𝑖 ∈ 𝐼) ∩𝑊) | 𝐸𝐼 ]

.

Proof. We give a lower bound on the perimeter of the intersection 𝑄(𝐴) ∩ 𝑊 in
terms of the number of edges. By our non-degeneracy assumption, every edge can
be uniquely represented as conv(𝑎𝑖 : 𝑖 ∈ 𝐼) ∩𝑊 , for 𝐼 ∈

( [𝑚]
𝑛

)
. From this we derive

the first equality, and we continue from that:

E[perimeter(𝑄(𝐴) ∩𝑊)] =
∑

𝐼 ∈( [𝑚]𝑛 )
E[length(conv(𝑎𝑖 : 𝑖 ∈ 𝐼) ∩𝑊) | 𝐸𝐼 ] Pr[𝐸𝐼 ]

≥
∑
𝐼 ∈𝐵

E[length(conv(𝑎𝑖 : 𝑖 ∈ 𝐼) ∩𝑊) | 𝐸𝐼 ] Pr[𝐸𝐼 ]

≥ min
𝐼 ∈𝐵

E[length(conv(𝑎𝑖 : 𝑖 ∈ 𝐼) ∩𝑊) | 𝐸𝐼 ]
∑
𝐽 ∈𝐵

Pr[𝐸𝐽 ] .

The first line holds because whenever 𝐸𝐼 holds, conv(𝑎𝑖 : 𝑖 ∈ 𝐼) ∩𝑊 is an edge of
𝑄(𝐴) ∩𝑊 , and every edge of 𝑄(𝐴) ∩𝑊 is formed by exactly one face 𝐹𝐽 , by the
non-degeneracy conditions we have assumed. By construction of 𝐵 and linearity of
expectation, ∑𝐽 ∈𝐵 Pr[𝐸𝐽 ] ≥

∑
𝐽 ∈( [𝑚]𝑛 ) Pr[𝐸𝐽 ] − 2 = E[|edges(𝑄(𝐴) ∩𝑊) |] − 2. By

dividing on both sides of the inequality, we can now conclude

E[|edges(𝑄(𝐴) ∩𝑊) |] ≤ 2 + E[perimeter(𝑄(𝐴) ∩𝑊)]
min𝐼 ∈𝐵 E[length(conv(𝑎𝑖 : 𝑖 ∈ 𝐼) ∩𝑊) | 𝐸𝐼 ]

. □

Given the above, we may now restrict our task to proving an upper bound on the
expected perimeter and a lower bound on the minimum expected edge length, which
will be the focus on the remainder of the subsection.

The perimeter is bounded using a standard convexity argument. A convex shape
has perimeter no more than that of any circle containing it. We exploit the fact that
all centers have norm at most 1 and the expected perturbation sizes are not too big
along any fixed axis.

Lemma 2.4.14. The expected perimeter of 𝑄(𝐴) ∩𝑊 is bounded by

E[perimeter(𝑄(𝐴) ∩𝑊)] ≤ 2𝜋(1 + 4𝑟𝑚),
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where 𝑟𝑚 is the 𝑚-deviation bound for 𝑎1, . . . , 𝑎𝑚.

Proof. By convexity, the perimeter is bounded from above by 2𝜋 times the norm of
the maximum norm point. Let �̂�𝑖 := 𝑎𝑖 − E[𝑎𝑖] denote the perturbation of 𝑎𝑖 from
the center of its distribution, recalling that ‖E[𝑎𝑖]‖ ≤ 1 by assumption. We can now
derive the bound

E[perimeter(𝑄(𝐴) ∩𝑊)] ≤ 2𝜋E[ max
𝑥∈𝑄 (𝐴)∩𝑊

‖𝑥‖]

= 2𝜋E[ max
𝑥∈𝑄 (𝐴)∩𝑊

‖𝜋𝑊 (𝑥)‖]

≤ 2𝜋E[ max
𝑥∈𝑄 (𝐴)

‖𝜋𝑊 (𝑥)‖]

= 2𝜋E[max
𝑖∈[𝑚]

‖𝜋𝑊 (𝑎𝑖)‖]

≤ 2𝜋
(
1 + E[max

𝑖≤𝑚
‖𝜋𝑊 (�̂�𝑖)‖]

)
,

where the last inequality follows since 𝑎1, . . . , 𝑎𝑚 have centers of norm at most 1. Pick
an orthogonal basis 𝑣1, 𝑣2 of𝑊 . By the triangle inequality the expected perturbation
size satisfies

E[max
𝑖≤𝑚
‖𝜋𝑊 (�̂�𝑖)‖] ≤

∑
𝑗∈{1,2}

E[max
𝑖≤𝑛
|𝑣 𝑗T�̂�𝑖 |] .

Each of the two expectations satisfies, by Lemma 2.4.8, E[max𝑖≤𝑚 |𝑣 𝑗T�̂�𝑖 |] ≤ 2𝑟𝑚,
thereby concluding the proof. □

The rest of this subsection will be devoted to finding a suitable lower bound on
the denominator E[length(conv(𝑎𝑖 : 𝑖 ∈ 𝐼) ∩𝑊) | 𝐸𝐼 ] uniformly over all choices of
𝐼 ∈ 𝐵. Without loss of generality we assume that 𝐼 = [𝑛] and write 𝐸 := 𝐸 [𝑛] .

Definition 2.4.15 (Containing hyperplane). Define 𝐻 = aff (𝑎1, . . . , 𝑎𝑛) = 𝑡𝜃 + 𝜃⊥,
where 𝜃 ∈ S𝑛−1, 𝑡 > 0 to be the hyperplane containing 𝑎1, . . . , 𝑎𝑛. Define 𝑙 = 𝐻 ∩𝑊 .
From our non-degeneracy conditions we know that 𝑙 is a line. Express 𝑙 = 𝑝 + 𝜔 · R,
where 𝜔 ∈ S𝑛−1 and 𝑝 ∈ 𝜔⊥.

To lower bound the length E[length(conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊) | 𝐸] we will need
the pairwise distances between the different 𝑎𝑖’s for 𝑖 ∈ [𝑛] to be small along 𝜔⊥.
This will allow us to get “wiggle room” around each vertex of conv(𝑎1, . . . , 𝑎𝑛) that
is proportional to the size of the facet.

Definition 2.4.16 (Bounded diameter event). We define the event 𝐷 to hold exactly
when ‖𝜋𝜔⊥ (𝑎𝑖) − 𝜋𝜔⊥ (𝑎 𝑗)‖ ≤ 2 + 2𝑅𝑚,𝑛 for all 𝑖, 𝑗 ∈ [𝑛].
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We will condition on the event 𝐷. This will not change the expected length
by much, because the probability that 𝐷 does not occur is small compared to the
probability of 𝐸 by our assumption that Pr[𝐸] ≥ 2

𝑛(𝑚𝑛)
.

Lemma 2.4.17. The expected edge length satisfies

E[length(conv(𝑎1, . . . , 𝑎𝑛)∩𝑊) | 𝐸] ≥ E[length(conv(𝑎1, . . . , 𝑎𝑛)∩𝑊) | 𝐷, 𝐸]/2.

Proof. Let the vector �̂�𝑖 denote the perturbation 𝑎𝑖 −E[𝑎𝑖]. Since distances can only
decrease when projecting, the complementary event 𝐷𝑐 satisfies

Pr[𝐷𝑐] = Pr[max
𝑖, 𝑗≤𝑛
‖𝜋𝜔⊥ (𝑎𝑖 − 𝑎 𝑗)‖ ≥ 2 + 2𝑅𝑚,𝑛]

≤ Pr[max
𝑖, 𝑗≤𝑛
‖𝑎𝑖 − 𝑎 𝑗 ‖ ≥ 2 + 2𝑅𝑚,𝑛],

by the triangle inequality and the bound of 1 on the norms of the centers, the line
above is at most

≤ Pr[max
𝑖≤𝑛
‖𝑎𝑖 ‖ ≥ 1 + 𝑅𝑚,𝑛]

≤ Pr[max
𝑖≤𝑛
‖�̂�𝑖 ‖ ≥ 𝑅𝑚,𝑛]

≤
(
𝑚

𝑛

)−1
.

By our assumption that [𝑛] ∈ 𝐵, we know that Pr[𝐸] ≥ 2
(𝑚
𝑛

)−1. In particular, it
follows that Pr[𝐸 ∩ 𝐷] ≥ Pr[𝐸] − Pr[𝐷𝑐] ≥ Pr[𝐸]/2. Thus, we may conclude that

E[length(conv(𝑎1, . . . , 𝑎𝑛)∩𝑊) | 𝐸] ≥ E[length(conv(𝑎1, . . . , 𝑎𝑛)∩𝑊) | 𝐷, 𝐸]/2.

□

For the rest of this section, we use a change of variables on 𝑎1, . . . , 𝑎𝑛. The
non-degeneracy conditions we have assumed at the start of this section make the
change of variables well-defined.

Recall the change of variables mapping (𝑎1, . . . , 𝑎𝑛) ↦→ (𝜃, 𝑡, 𝑏1, . . . , 𝑏𝑛) for
𝜃 ∈ S𝑛−1, 𝑡 > 0, 𝑏1, . . . , 𝑏𝑛 ∈ R𝑛−1 from Theorem 2.2.6. We abbreviate �̄�𝑖 (𝜃, 𝑡, 𝑏𝑖) =
𝜇𝑖 (𝑅𝜃 (𝑏𝑖) + 𝑡𝜃) and we write �̄�𝑖 (𝑏𝑖) when the values of 𝜃, 𝑡 are clear.

By Theorem 2.2.6 we know that for any fixed values of 𝜃, 𝑡 the vectors 𝑏1, . . . , 𝑏𝑛
have joint probability density proportional to

vol𝑛−1(conv(𝑏1, . . . , 𝑏𝑛))
𝑛∏
𝑖=1

�̄�𝑖 (𝑏𝑖) . (2.15)
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𝐻

𝑊

𝑙

𝑎1

𝑎2

𝑎3

Figure 2.3: 𝑎1, . . . , 𝑎𝑛 are conditioned for conv(𝑎1, . . . , 𝑎𝑛) to intersect𝑊 and lie in
𝐻. The red line corresponds to induced edge. The blue line represents the longest
chord parallel to ℓ.

We assumed that 𝑎1, . . . , 𝑎𝑛 are affinely independent, so 𝑏1, . . . , 𝑏𝑛 are affinely
independent as well.

In the next lemma, we condition on the hyperplane 𝐻 = 𝑡𝜃 + 𝜃⊥ and from then on
we restrict our attention to what happens inside 𝐻. Conditioned on 𝑎1, . . . , 𝑎𝑛 lying
in 𝐻, the set conv(𝑎1, . . . , 𝑎𝑛) is a facet of 𝑄(𝐴) if and only if all of 𝑎𝑛+1, . . . , 𝑎𝑚
lie on one side of 𝐻. This means that the shape of conv(𝑎1, . . . , 𝑎𝑛) in 𝐻 does not
influence the event that it forms a facet, so in studying this convex hull we can then
ignore 𝑎𝑛+1, . . . , 𝑎𝑚.

We identify the hyperplane 𝐻 with R𝑛−1 and define 𝑙 = 𝑝 + �̄� · R ⊆ R𝑛−1

corresponding to 𝑙 = 𝑝 + 𝜔 · R by 𝑝 = 𝑅−1
𝜃 (𝑝 − 𝑡𝜃), �̄� = 𝑅−1

𝜃 (𝜔). We define �̄� as
the event that conv(𝑏1, . . . , 𝑏𝑛) ∩ 𝑙 ≠ ∅. Notice that 𝐸 holds if and only if �̄� and
conv(𝑎1, . . . , 𝑎𝑛) is a facet of 𝑄(𝐴). See Figure 2.3.

We will condition on the shape of the projected simplex.

Definition 2.4.18 (Projected shape). We define the projected shift variable by 𝑥 :=
𝑥𝜔 (𝑏1) = 𝜋�̄�⊥ (𝑏1) and shape variable 𝑆 := 𝑆𝜔 (𝑏1, . . . , 𝑏𝑛) by

𝑆𝜔 (𝑏1, . . . , 𝑏𝑛) = (®0, 𝜋�̄�⊥ (𝑏2) − 𝑥, . . . , 𝜋�̄�⊥ (𝑏𝑛) − 𝑥) .

We index 𝑆 = (𝑠1, . . . , 𝑠𝑛), so 𝑠𝑖 ∈ �̄�⊥ is the 𝑖-th vector in 𝑆, and furthermore define
the diameter function diam(𝑆) = max𝑖, 𝑗∈[𝑛] ‖𝑠𝑖 − 𝑠 𝑗 ‖. We will condition on the shape
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being in the set of allowed shapes

S := {(𝑠1, . . ., 𝑠𝑛) ∈ (�̄�⊥)𝑛 : 𝑠1 = ®0, diam(𝑆) ≤2 + 2𝑅𝑚,𝑛, rank(𝑠2, . . ., 𝑠𝑛) = 𝑛 − 2}.

Observe that 𝑆 ∈ S if and only if the event 𝐷 holds. To justify the rank condition
on 𝑠2, . . . , 𝑠𝑛, note that by our non-degeneracy conditions, we have that 𝑏1, . . . , 𝑏𝑛
are affinely independent. In particular, they do not all lie in an (𝑛 − 2)-dimensional
affine subspace. This means that 𝑠1, . . . , 𝑠𝑛 do not all lie in a (𝑛 − 3)-dimensional
affine subspace, from which it follows that rank(𝑠2, . . ., 𝑠𝑛) = 𝑛 − 2 (recalling that
𝑠1 = ®0).

Lemma 2.4.19. Let 𝜃 ∈ S𝑛−1, 𝑡 > 0, 𝑏1, . . . , 𝑏𝑛 ∈ R𝑛−1 denote the change of variables
of 𝑎1, . . . , 𝑎𝑛 ∈ R𝑛 as discussed above. Then, the expected length satisfies

E[length(conv(𝑎1, . . . ,𝑎𝑛) ∩𝑊) | 𝐷, 𝐸]
≥ inf
𝜃,𝑡 ,𝑆∈S

E[length(conv(𝑏1, . . . , 𝑏𝑛) ∩ 𝑙) | 𝜃, 𝑡, 𝑆, �̄�] .

Proof. To derive the desired inequality, we first understand the effect of conditioning
on 𝐸 . Let 𝐸0 denote the event that 𝐹 := conv(𝑎1, . . . , 𝑎𝑛) induces a facet of 𝑄(𝐴).
Note that 𝐸 is equivalent to 𝐸0∩ �̄� , where �̄� is as above. We now perform the change
of variables from 𝑎1, . . . , 𝑎𝑛 ∈ R𝑛 to 𝜃 ∈ S𝑛−1, 𝑡 ∈ R+, 𝑏1, . . . , 𝑏𝑛 ∈ R𝑛−1. The set
𝐹 is a facet of 𝑄(𝐴) if and only if 𝜃T𝑎𝑛+𝑖 ≤ 𝑡 for all 𝑖 ∈ [𝑚 − 𝑛] or 𝜃T𝑎𝑛+𝑖 ≥ 𝑡 for all
𝑖 ∈ [𝑚 − 𝑛]. Given this, we see that

E[length(conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊) | 𝐷, 𝐸]
= E[length(conv(𝑏1, . . . , 𝑏𝑛) ∩ 𝑙) | 𝐷, 𝐸0, �̄�]

=
E[ 1[𝐸0] · length(conv(𝑏1, . . . , 𝑏𝑛) ∩ 𝑙) | 𝐷, �̄�]

Pr[𝐸0 | 𝐷, �̄�]

=
E𝜃,𝑡 [ E[1[𝐸0] · length(conv(𝑏1, . . . , 𝑏𝑛) ∩ 𝑙) | 𝜃, 𝑡, 𝐷, �̄�] ]

E𝜃,𝑡 [ Pr[𝐸0 | 𝜃, 𝑡, 𝐷, �̄�] ]

(2.16)

Since 𝑎1, . . . , 𝑎𝑚 are independent, conditioned on 𝜃, 𝑡, the random vectors 𝑏1, . . . , 𝑏𝑛
are independent of 𝜃T𝑎𝑛+1, . . . , 𝜃T𝑎𝑚. Since the events 𝐷 and �̄� only depend on
𝑏1, . . . , 𝑏𝑛, continuing from (2.16), we get that

E𝜃,𝑡 [ E[1[𝐸0] · length(conv(𝑏1, . . . , 𝑏𝑛) ∩ 𝑙) | 𝜃, 𝑡, 𝐷, �̄�] ]
E𝜃,𝑡 [ Pr[𝐸0 | 𝜃, 𝑡, 𝐷, �̄�] ]

=
E𝜃,𝑡 [Pr[𝐸0 | 𝜃, 𝑡] · E[length(conv(𝑏1, . . . , 𝑏𝑛) ∩ 𝑙) | 𝜃, 𝑡, 𝐷, �̄�] ]

E𝜃,𝑡 [ Pr[𝐸0 | 𝜃, 𝑡]]
≥ inf
𝜃 ∈S𝑛−1,𝑡>0

E[length(conv(𝑏1, . . . , 𝑏𝑛) ∩ 𝑙) | 𝜃, 𝑡, 𝐷, �̄�] .
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The last inequality uses the general fact that if 𝑓 , 𝑔 are functions then∫
𝑓 (𝑥)𝑔(𝑥) d𝑥∫
𝑓 (𝑥) d𝑥

≥ inf 𝑔(𝑥)

when 𝑓 is non-negative and has finite integral.
Lastly, since the event 𝐷 is equivalent to 𝑆 := 𝑆𝜔 (𝑏1, . . . , 𝑏𝑛) ∈ S as in Defini-

tion 2.4.18, we have that

E[length(conv(𝑎1, . . . ,𝑎𝑛) ∩𝑊) | 𝐷, 𝐸]
≥ inf
𝜃,𝑡 ,𝑆∈S

E[length(conv(𝑏1, . . . , 𝑏𝑛) ∩ 𝑙) | 𝜃, 𝑡, 𝑆, �̄�] . □

Definition 2.4.20 (Kernel combination). For 𝑆 ∈ S, define the combination 𝑧 := 𝑧(𝑆)
to be the unique (up to sign) 𝑧 = (𝑧1, . . . , 𝑧𝑛) ∈ R𝑛 satisfying

𝑛∑
𝑖=1

𝑧𝑖𝑠𝑖 = ®0,
𝑛∑
𝑖=1

𝑧𝑖 = 0, ‖𝑧‖1 = 1.

To justify the above definition, it suffices to show that the system of equations
𝑛∑
𝑖=1

𝑧𝑖𝑠𝑖 = ®0,
𝑛∑
𝑖=1

𝑧𝑖 = 0 (2.17)

has a one-dimensional solution space. Since 𝑠1, . . . , 𝑠𝑛 live in a (𝑛 − 2) dimensional
space, the solution space has dimension at least 1 by dimension counting. Next, note
that 𝑧 is a solution to (2.17) if and only if 𝑧1 = −∑𝑛

𝑖=2 𝑧𝑖 and
𝑛∑
𝑖=2

𝑧𝑖𝑠𝑖 = ®0 (2.18)

(since 𝑠1 = ®0). Thus, the solution space of (2.17) and (2.18) have the same dimension.
Given our assumption that rank(𝑠2, . . . , 𝑠𝑛) = 𝑛− 2, it follows that the solution space
of (2.18) is one-dimensional, exactly what is needed for the kernel combination 𝑧(𝑆)
to be unique up to sign.

Observe that for 𝑆 := 𝑆𝜔 (𝑏1, . . . , 𝑏𝑛), 𝑧 satisfies 𝜋�̄�⊥ (
∑𝑛
𝑖=1 𝑧𝑖𝑏𝑖) = ®0.

The vector 𝑧 provides us with a unit to measure lengths in “convex combination
space”. We make this formal with the next definition:

Definition 2.4.21 (Chord combinations). We define the set of convex combinations
of the shape 𝑆 = (𝑠1, . . . , 𝑠𝑛) ∈ S that equal 𝑞 ∈ �̄�⊥ by

𝐶𝑆 (𝑞) := {(𝜆1, . . . , 𝜆𝑛) ≥ ®0 :
𝑛∑
𝑖=1

𝜆𝑖 = 1,
𝑛∑
𝑖=1

𝜆𝑖𝑠𝑖 = 𝑞} ⊆ R𝑛.

When 𝑆 is clear we drop the subscript.
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Observe that 𝐶 (𝑞) is a line segment of the form 𝐶 (𝑞) = 𝜆𝑞 + 𝑧 · [0, 𝑑𝑞]. We write
‖𝐶 (𝑞)‖1 for the ℓ1-diameter of 𝐶 (𝑞). Since 𝐶 (𝑞) is a line segment, ‖𝐶 (𝑞)‖1 = 𝑑𝑞.
We prove two basic properties of ‖𝐶 (𝑞)‖1 as a function of 𝑞.

Lemma 2.4.22 (Properties of chord combinations). Let 𝑦 := 𝑦(𝑆) = ∑𝑛
𝑖=1 |𝑧𝑖 |𝑠𝑖 , with

𝑧 := 𝑧(𝑆) as in Definition 2.4.21. Then the following holds:

• ‖𝐶 (𝑞)‖1 is a concave function for 𝑞 ∈ conv(𝑆).

• max𝑞∈conv(𝑆) ‖𝐶 (𝑞)‖1 = ‖𝐶 (𝑦)‖1 = 2.

Proof. For the first claim, take 𝑥, 𝑦 ∈ conv(𝑆). Let 𝛼 ∈ 𝐶 (𝑥) and 𝛽 ∈ 𝐶 (𝑦). Then
we see that, for all 𝛾 ∈ [0, 1],

𝛾𝛼+(1−𝛾)𝛽 ≥ 0,
𝑛∑
𝑖=1

𝛾𝛼𝑖+(1−𝛾)𝛽𝑖 = 1,
𝑛∑
𝑖=1
(𝛾𝛼𝑖+(1−𝛾)𝛽𝑖)𝑠𝑖 = 𝛾𝑥+(1−𝛾)𝑦,

from which we derive that

𝛾𝐶 (𝑥) + (1 − 𝛾)𝐶 (𝑦) ⊆ 𝐶 (𝛾𝑥 + (1 − 𝛾)𝑦),

and hence

‖𝐶 (𝛾𝑥 + (1 − 𝛾)𝑦)‖1 ≥ ‖𝛾𝐶 (𝑥) + (1 − 𝛾)𝐶 (𝑦)‖1 = 𝛾‖𝐶 (𝑥)‖1 + (1 − 𝛾)‖𝐶 (𝑦)‖1.

For the second claim, we look at the combination 𝑦 := ∑𝑛
𝑖=1 |𝑧𝑖 |𝑠𝑖 ∈ conv(𝑆).

For all 𝛾 ∈ [−1, 1], we have ∑𝑛
𝑖=1(|𝑧𝑖 | + 𝛾𝑧𝑖)𝑠𝑖 = 𝑦, ∑𝑛

𝑖=1 |𝑧𝑖 | + 𝛾𝑧𝑖 = ‖𝑧‖1 = 1 and
|𝑧𝑖 | + 𝛾𝑧𝑖 ≥ 0, ∀𝑖 ∈ [𝑛]. Hence, ‖𝐶 (𝑦)‖1 ≥ 2. Now suppose there is some 𝑦′ with
‖𝐶 (𝑦′)‖1 > 2. That means there is some convex combination 𝜆 = (𝜆1, . . . , 𝜆𝑛) ≥ ®0,
‖𝜆‖1 = 1, with ∑𝑛

𝑖=1 𝜆𝑖𝑠𝑖 = 𝑦
′ such that coordinatewise 𝜆 + 𝑧 > ®0 and 𝜆 − 𝑧 > ®0. Let

𝐼 ∪ 𝐽 be a partition of [𝑛] such that 𝑧𝑖 ≥ 0 for 𝑖 ∈ 𝐼 and 𝑧 𝑗 < 0 for 𝑗 ∈ 𝐽. We know
that ∑𝑛

𝑖=1 𝑧𝑖 = 0, so ∑
𝑖∈𝐼 𝑧𝑖 = −

∑
𝑗∈𝐽 𝑧 𝑗 . This makes

1 = ‖𝑧‖1 =
∑
𝑖∈𝐼

𝑧𝑖 −
∑
𝑗∈𝐽

𝑧𝑖 = 2
∑
𝑖∈𝐼

𝑧𝑖 ,

so ∑
𝑖∈𝐼 𝑧𝑖 = 1/2. The combination 𝜆 satisfies∑

𝑖∈𝐼
𝜆𝑖 >

∑
𝑖∈𝐼

𝑧𝑖 = 1/2,
∑
𝑗∈𝐽

𝜆 𝑗 >
∑
𝑗∈𝐽
−𝑧 𝑗 = 1/2,

from which we conclude ‖𝜆‖1 > 1. As this is a contradiction, we must have
max𝑞∈conv(𝑆) ‖𝐶 (𝑞)‖1 = 2. □
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The ℓ1-diameter ‖𝐶 (𝑞)‖1 specified by 𝑞 ∈ conv(𝑆(𝑏1, . . . , 𝑏𝑛)) directly relates
to the length of the chord (𝑞 + 𝑥 + �̄� ·R) ∩ conv(𝑏1, . . . , 𝑏𝑛), which projects to 𝑞 + 𝑥
under 𝜋�̄�⊥ . Specifically, ‖𝐶 (𝑞)‖1 measures how long the chord is compared to the
longest chord through the simplex. The exact relation is given below.
Lemma 2.4.23. Let (ℎ1, . . . , ℎ𝑛) = (�̄�T𝑏1, . . . , �̄�

T𝑏𝑛), (𝑠1, . . . , 𝑠𝑛) = 𝑆(𝑏1, . . . , 𝑏𝑛),
𝑥 = 𝜋�̄�⊥ (𝑏1). For any 𝑞 ∈ conv(𝑆) the following equality holds:

length((𝑥 + 𝑞 + �̄� · R) ∩ conv(𝑏1, . . . , 𝑏𝑛)) = ‖𝐶 (𝑞)‖1 · |
𝑛∑
𝑖=1

𝑧𝑖ℎ𝑖 |.

Proof. By construction there is a convex combination 𝜆1, . . . , 𝜆𝑛 ≥ 0, ∑𝑛
𝑖=1 𝜆𝑖 = 1

satisfying ∑𝑛
𝑖=1 𝜆𝑖𝑠𝑖 = 𝑞 such that 𝐶 (𝑞) = [𝜆, 𝜆 + ‖𝐶 (𝑞)‖1𝑧] and hence

(𝑥 + 𝑞 + �̄� · R) ∩ conv(𝑏1, . . . , 𝑏𝑛) = [
𝑛∑
𝑖=1

𝜆𝑖𝑏𝑖 ,
𝑛∑
𝑖=1
(𝜆𝑖 + ‖𝐶 (𝑞)‖1𝑧𝑖)𝑏𝑖] .

From this we deduce

length((𝑥 + 𝑞 + �̄� · R) ∩ conv(𝑏1, . . . , 𝑏𝑛)) =





 𝑛∑
𝑖=1
(𝜆𝑖 + ‖𝐶 (𝑞)‖1𝑧𝑖)𝑏𝑖 −

𝑛∑
𝑖=1

𝜆𝑖𝑏𝑖







=






 𝑛∑
𝑖=1
‖𝐶 (𝑞)‖1𝑧𝑖𝑏𝑖







= ‖𝐶 (𝑞)‖1 · |

𝑛∑
𝑖=1

𝑧𝑖ℎ𝑖 |.

The third equality follows from the definition of 𝑧1, . . . , 𝑧𝑛: as 𝜋�̄�⊥ (
∑𝑛
𝑖=1 𝑧𝑖𝑏𝑖) = ®0,

we must have ‖∑𝑛
𝑖=1 𝑧𝑖𝑏𝑖 ‖ = ‖

∑𝑛
𝑖=1 𝑧𝑖ℎ𝑖�̄�‖ = |

∑𝑛
𝑖=1 𝑧𝑖ℎ𝑖 |. □

We can view the terms in the above product as follows: the length of the longest
chord of conv(𝑏1, . . . , 𝑏𝑛) parallel to 𝑙 is 2|∑𝑛

𝑖=1 𝑧𝑖ℎ𝑖 |, and the ratio of the length of
the chord conv(𝑏1, . . . , 𝑏𝑛) ∩ 𝑙 to the length of the longest chord parallel to 𝑙 equals
‖𝐶 (𝑞)‖1/2. This follows from Lemma 2.4.22 since ‖𝐶 (𝑞)‖1 achieves a maximum
value of 2 at 𝑞 = 𝑦. As discussed in the high-level description, we will bound the
expected values of these two quantities separately.

The term |∑𝑛
𝑖=1 𝑧𝑖ℎ𝑖 | can also be used to simplify the volume term in the probability

density of 𝑏1, . . . , 𝑏𝑛 after we condition on the shape 𝑆. We prove this in the next
lemma.
Lemma 2.4.24. For fixed 𝜃 ∈ S𝑛−1, 𝑡 > 0, 𝑆 ∈ S, define 𝑥 ∈ �̄�⊥, ℎ1, . . . , ℎ𝑛 ∈ R
conditioned on 𝜃, 𝑡, 𝑆 to have joint probability density function proportional to

|
𝑛∑
𝑖=1

𝑧𝑖ℎ𝑖 | ·
𝑛∏
𝑖=1

�̄�𝑖 (𝑥 + 𝑠𝑖 + ℎ𝑖�̄�),
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where 𝑧 := 𝑧(𝑆) is as in Definition 2.4.20. Then for 𝑏1, . . . , 𝑏𝑛 ∈ R𝑛−1 distributed as
in Lemma 2.4.19, conditioned on 𝜃, 𝑡 and the shape 𝑆 = (𝑠1, . . . , 𝑠𝑛), where 𝑠1 = ®0,
we have equivalence of the distributions

(𝑏1, . . . , 𝑏𝑛) | 𝜃, 𝑡, 𝑆 ≡ (𝑥 + 𝑠1 + ℎ1�̄�, . . . , 𝑥 + 𝑠𝑛 + ℎ𝑛�̄�) | 𝜃, 𝑡, 𝑆.

Proof. The variables 𝑏1, . . . , 𝑏𝑛 conditioned on 𝜃, 𝑡 have density proportional to

vol𝑛−1(conv(𝑏1, . . . , 𝑏𝑛))
𝑛∏
𝑖=1

�̄�𝑖 (𝑏𝑖).

We make a change of variables from 𝑏1, . . . , 𝑏𝑛 to 𝑥, 𝑠2, . . . , 𝑠𝑛 ∈ �̄�⊥, ℎ1, . . . , ℎ𝑛 ∈ R,
defined by

(𝑏1, . . . , 𝑏𝑛) = (𝑥 + ℎ1�̄�, 𝑥 + 𝑠2 + ℎ𝑛�̄�, . . . , 𝑥 + 𝑠𝑛 + ℎ𝑛�̄�).

Recall that any invertible linear transformation has constant Jacobian. We observe
that

vol𝑛−1(conv(𝑏1, . . . , 𝑏𝑛)) =
∫

conv(𝑆)
length((𝑥 + 𝑞 + �̄� · R) ∩ conv(𝑏1, . . . , 𝑏𝑛)) d𝑞.

By Lemma 2.4.23 we find

vol𝑛−1(conv(𝑏1, . . . , 𝑏𝑛)) = |
𝑛∑
𝑖=1

𝑧𝑖ℎ𝑖 |
∫

conv(𝑆)
‖𝐶 (𝑞)‖1 d𝑞.

The integral of ‖𝐶 (𝑞)‖1 over conv(𝑆) is independent of 𝑥, ℎ1, . . . , ℎ𝑛. Thus, for fixed
𝜃 ∈ S𝑛−1, 𝑡 > 0, 𝑆 ∈ S , the random variables 𝑥, ℎ1, . . . , ℎ𝑛 have joint probability
density proportional to

|
𝑛∑
𝑖=1

𝑧𝑖ℎ𝑖 | ·
𝑛∏
𝑖=1

�̄�𝑖 (𝑥 + 𝑠𝑖 + ℎ𝑖�̄�). □

Recall that 𝑙 = 𝑝 + �̄� · R. The event �̄� that conv(𝑏1, . . . , 𝑏𝑛) ∩ 𝑙 ≠ ∅ occurs if
and only if 𝑝 ∈ 𝑥 + conv(𝑆), hence if and only if 𝑝 − 𝑥 ∈ conv(𝑆).
Lemma 2.4.25. For fixed 𝜃 ∈ S𝑛−1, 𝑡 > 0, 𝑆 ∈ S, let 𝑏1, . . . , 𝑏𝑛 ∈ R𝑛−1,ℎ1, . . . , ℎ𝑛 ∈
R, 𝑥 ∈ 𝜔⊥ be random variables distributed as in Lemma 2.4.24. Define 𝑞 := 𝑝 − 𝑥.
Then, the expected edge length satisfies

E[length(conv(𝑏1, . . . , 𝑏𝑛) ∩ 𝑙) | 𝜃, 𝑡, 𝑆, �̄�] ≥E[‖𝐶 (𝑞)‖1 | 𝜃, 𝑡, 𝑆, �̄�]

· inf
𝑥∈�̄�⊥

E[|
𝑛∑
𝑖=1

𝑧𝑖ℎ𝑖 | | 𝜃, 𝑡, 𝑆, 𝑥] .
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Proof. We start with the assertion of Lemma 2.4.23:

length((𝑥 + 𝑞 + �̄� · R) ∩ conv(𝑏1, . . . , 𝑏𝑛)) = ‖𝐶 (𝑞)‖1 · |
𝑛∑
𝑖=1

𝑧𝑖ℎ𝑖 |.

We take expectation on both sides to derive the equality

E[length(conv(𝑏1, . . . , 𝑏𝑛) ∩ 𝑙) | 𝜃, 𝑡, 𝑆, �̄�] = E[‖𝐶 (𝑞)‖1 · |
𝑛∑
𝑖=1

𝑧𝑖ℎ𝑖 | | 𝜃, 𝑡, 𝑆, �̄�] .

Since ‖𝐶 (𝑞)‖1 and |∑𝑛
𝑖=1 𝑧𝑖ℎ𝑖 | do not share any of their variables, we separate the

two expectations:

E[‖𝐶 (𝑞)‖1 · |
𝑛∑
𝑖=1

𝑧𝑖ℎ𝑖 | | 𝜃, 𝑡, 𝑆, �̄�] = E𝑥,ℎ1,...,ℎ𝑛 [‖𝐶 (𝑞)‖1 · |
𝑛∑
𝑖=1

𝑧𝑖ℎ𝑖 | | 𝜃, 𝑡, 𝑆, �̄�]

= E𝑥 [‖𝐶 (𝑞)‖1Eℎ1,...,ℎ𝑛 [|
𝑛∑
𝑖=1

𝑧𝑖ℎ𝑖 | | 𝜃, 𝑡, 𝑆, 𝑥] | 𝜃, 𝑡, 𝑆, �̄�]

≥ E𝑥 [‖𝐶 (𝑞)‖1 | 𝜃, 𝑡, 𝑆, �̄�] inf
𝑥∈�̄�⊥

Eℎ1,...,ℎ𝑛 [|
𝑛∑
𝑖=1

𝑧𝑖ℎ𝑖 | | 𝜃, 𝑡, 𝑆, 𝑥] . □

We will first bound the expected ℓ1-diameter of 𝐶 (𝑞), where 𝑞 = 𝑝 − 𝑥, which
depends on where 𝑝−𝑥 intersects the projected simplex conv(𝑆): where this quantity
tends to get smaller as we approach the boundary of conv(𝑆). We recall that �̄� occurs
if and only if 𝑞 ∈ conv(𝑆).

Lemma 2.4.26 (Chord combination bound). Let 𝜃 ∈ S𝑛−1, 𝑡 > 0 and 𝑆 ∈ S be fixed.
Let 𝑞 = 𝑝 − 𝑥 be distributed as in Lemma 2.4.25. Then, the expected ℓ1-diameter of
𝐶 (𝑞) satisfies

E[‖𝐶 (𝑞)‖1 | 𝜃, 𝑡, 𝑆, �̄�] ≥
𝑒−2

𝑛𝐿 (1 + 𝑅𝑚,𝑛)

Proof. To get a lower bound on the expected value of ‖𝐶 (𝑞)‖1, we will use the concav-
ity of ‖𝐶 (𝑞)‖1 over conv(𝑆) = conv(𝑠1, . . . , 𝑠𝑛) and that max𝑞∈conv(𝑆) ‖𝐶 (𝑞)‖1 = 2.
These facts are proven in Lemma 2.4.22. We show that shifting the projected simplex
does not change the probability density too much (using log-Lipschitzness), and use
the properties of ‖𝐶 (𝑞)‖1 mentioned above.

Let �̂� denote the probability density of 𝑞 conditioned on 𝜃, 𝑡, 𝑆, �̄� . Note that �̂� is
supported on conv(𝑆) and has density proportional to∫

· · ·
∫
|
𝑛∑
𝑖=1

𝑧𝑖ℎ𝑖 |
𝑛∏
𝑖=1

�̄�𝑖 (𝑝 − 𝑞 + 𝑠𝑖 + ℎ𝑖�̄�) dℎ1 · · · dℎ𝑛.
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We claim that �̂� is 𝑛𝐿-log-Lipschitz. To see this, note that since �̄�1, . . . , �̄�𝑛 are
𝐿-log-Lipschitz, for 𝑣, 𝑣′ ∈ conv(𝑆) we have that∫

· · ·
∫
|
𝑛∑
𝑖=1

𝑧𝑖ℎ𝑖 |
𝑛∏
𝑖=1

�̄�𝑖 (𝑝 − 𝑣 + 𝑠𝑖 + ℎ𝑖�̄�) dℎ1 · · · dℎ𝑛

≤
∫
· · ·

∫
|
𝑛∑
𝑖=1

𝑧𝑖ℎ𝑖 |
𝑛∏
𝑖=1

𝑒𝐿 ‖𝑣
′−𝑣 ‖ �̄�𝑖 (𝑝 − 𝑣′ + 𝑠𝑖 + ℎ𝑖�̄�) dℎ1 · · · dℎ𝑛

= 𝑒𝑛𝐿 ‖𝑣
′−𝑣 ‖

∫
· · ·

∫
|
𝑛∑
𝑖=1

𝑧𝑖ℎ𝑖 |
𝑛∏
𝑖=1

�̄�𝑖 (𝑝 − 𝑣′ + 𝑠𝑖 + ℎ𝑖�̄�) dℎ1 · · · dℎ𝑛,

as needed.
Let 𝛼 ∈ (0, 1) be a scale factor to be chosen later, and let 𝑦 = 𝑦(𝑆) ∈ conv(𝑆) be

as in Lemma 2.4.22. Now we can write

E[‖𝐶 (𝑞)‖ | 𝜃, 𝑡, 𝑆, �̄�] =
∫

conv(𝑆)
‖𝐶 (𝑞)‖1 �̂�(𝑞) d𝑞

≥
∫
𝛼conv(𝑆)+(1−𝛼)𝑦

‖𝐶 (𝑞)‖1 �̂�(𝑞) d𝑞, (2.19)

because the integrand is non-negative. By concavity of ‖𝐶 (𝑞)‖1 we have the lower
bound ‖𝐶 (𝛼𝑞 + (1−𝛼)𝑦)‖ ≥ 2(1−𝛼) for all 𝑞 ∈ conv(𝑆). Therefore, (2.19) is lower
bounded by

≥
∫
𝛼conv(𝑆)+(1−𝛼)𝑦

2(1 − 𝛼) �̂�(𝑞) d𝑞

= 2𝛼𝑛 (1 − 𝛼)
∫

conv(𝑆)
�̂�(𝛼𝑞 + (1 − 𝛼)𝑦) d𝑞

≥ 2𝛼𝑛 (1 − 𝛼)𝑒−max𝑞∈conv(𝑆) (1−𝛼) ‖𝑞−𝑦 ‖ ·𝑛𝐿
∫

conv(𝑆)
�̂�(𝑞) d𝑞,

= 2𝛼𝑛 (1 − 𝛼)𝑒−max𝑖∈[𝑛] (1−𝛼) ‖𝑠𝑖−𝑦 ‖ ·𝑛𝐿 , (2.20)

where we used a change of variables in the first equality, the 𝑛𝐿-log-Lipschitzness of
�̂� in the second inequality, and the convexity of the ℓ2 norm in the last equality. Using
the diameter bound of 2 + 2𝑅𝑚,𝑛 for conv(𝑆), (2.20) is lower bounded by

≥ 2𝛼𝑛 (1 − 𝛼)𝑒−(1−𝛼)𝑛𝐿 (2+2𝑅𝑚,𝑛) . (2.21)

Setting 𝛼 = 1− 1
𝑛𝐿 (2+2𝑅𝑚,𝑛) ≥ 1−1/𝑛 (by Lemma 2.4.9) gives a lower bound for (2.21)

of

≥ 𝑒−2 1
𝑛𝐿 (1 + 𝑅𝑚,𝑛)

. □
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Recall that we have now fixed the position 𝑥 and shape 𝑆 of the projected simplex.
The randomness we have left is in the positions ℎ1, . . . , ℎ𝑛 of 𝑏1, . . . , 𝑏𝑛 along lines
parallel to the vector �̄�. As 𝜃 and 𝑡 are also fixed, restricting 𝑏𝑖 to lie on a line is the
same as restricting 𝑎𝑖 to lie on a line.

Lemma 2.4.27 (Height of simplex bound). Let 𝜃 ∈ S𝑛−1, 𝑡 ≥ 0, 𝑆 ∈ S, 𝑥 ∈ �̄�⊥ be
fixed and let 𝑧 := 𝑧(𝑆) be as in Definition 2.4.20. Then for ℎ1, . . . , ℎ𝑛 ∈ R distributed
as in Lemma 2.4.25, the expected inner product satisfies

inf
𝑥∈�̄�⊥

E[|
𝑛∑
𝑖=1

𝑧𝑖ℎ𝑖 | | 𝜃, 𝑡, 𝑆, 𝑥] ≥ 𝜏/(2
√
𝑛).

Proof. For fixed 𝜃, 𝑡, 𝑆, 𝑥, let 𝑔1, . . . , 𝑔𝑛 ∈ R be independent random variables with
respective probability densities �̃�1, . . . , �̃�𝑛, where �̃�𝑖 , 𝑖 ∈ [𝑛], is defined by

�̃�𝑖 (𝑔𝑖) := �̄�(𝑥 + 𝑠𝑖 + 𝑔𝑖�̄�) = 𝜇(𝑅𝜃 (𝑥 + 𝑠𝑖 + 𝑔𝑖�̄�) + 𝑡𝜃) .

Note that, by assumption, the variables 𝑔1, . . . , 𝑔𝑛 each have variance at least 𝜏2.
We recall from Lemma 2.4.24 that the joint probability density of ℎ1, . . . , ℎ𝑛 is
proportional to |∑𝑛

𝑖=1 𝑧𝑖ℎ𝑖 |
∏𝑛
𝑖=1 �̃�𝑖 (ℎ𝑖). Thus, we may rewrite the above expectation

as

E[|
𝑛∑
𝑖=1

𝑧𝑖ℎ𝑖 | | 𝜃, 𝑡, 𝑆, 𝑥] =
∫
· · ·

∫
R |

∑𝑛
𝑖=1 𝑧𝑖ℎ𝑖 |

2 ∏𝑛
𝑖=1 �̃�𝑖 (ℎ𝑖) dℎ1 · · · dℎ𝑛∫

· · ·
∫
R |

∑𝑛
𝑖=1 𝑧𝑖ℎ𝑖 |

∏𝑛
𝑖=1 �̃�𝑖 (ℎ𝑖) dℎ1 · · · dℎ𝑛

=
E[|∑𝑛

𝑖=1 𝑧𝑖𝑔𝑖 |
2]

E[|∑𝑛
𝑖=1 𝑧𝑖𝑔𝑖 |]

,

where 𝑔1, . . . , 𝑔𝑛 are distributed independently with densities �̃�1, . . . , �̃�𝑛. By the
additivity of variance for independent random variables, we see that

Var(
𝑛∑
𝑖=1

𝑧𝑖𝑔𝑖) =
𝑛∑
𝑖=1

𝑧2𝑖Var(𝑔𝑖) ≥ 𝜏2‖𝑧‖2 ≥ 𝜏2‖𝑧‖21/𝑛 = 𝜏2/𝑛.

We reach the desired conclusion by applying Lemma 2.3.2:

E[|∑𝑛
𝑖=1 𝑧𝑖𝑔𝑖 |

2]
E[|∑𝑛

𝑖=1 𝑧𝑖𝑔𝑖 |]
≥
|E[∑𝑛

𝑖=1 𝑧𝑖𝑔𝑖] | +
√

Var(∑𝑛
𝑖=1 𝑧𝑖𝑔𝑖)

2
≥ 𝜏/(2

√
𝑛). □

Using the bounds from the preceding lemmas, the proof of our main theorem is
now given below.
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Proof of Theorem 2.4.10 (Parametrized Shadow Bound). By Lemma 2.4.13, we de-
rive the shadow bound by combining an upper bound on E[perimeter(𝑄(𝐴) ∩𝑊)]
and a uniform lower bound on E[length(conv(𝑎𝑖 : 𝑖 ∈ 𝐼) ∩𝑊) | 𝐸𝐼 ] for all 𝐼 ∈ 𝐵.
For the perimeter upper bound, by Lemma 2.4.14 we have that

E[perimeter(𝑄(𝐴) ∩𝑊)] ≤ 2𝜋(1 + 4𝑟𝑚). (2.22)

For the edge length bound, we assume w.l.o.g. as above that 𝐼 = [𝑛]. Combining
prior lemmas, we have that

E[length(conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊) | 𝐸]

≥ 1
2
· E[length(conv(𝑎1, . . . , 𝑎𝑛) ∩𝑊) | 𝐷, 𝐸] ( Lemma 2.4.17 )

≥ 1
2
· inf
𝜃 ∈S𝑛−1
𝑡>0

E[length(conv(𝑏1, . . . , 𝑏𝑛) ∩ 𝑙) | 𝜃, 𝑡, 𝑆 ∈ S, �̄�] ( Lemma 2.4.19 )

≥ 1
2
· inf
𝜃 ∈S𝑛−1
𝑡>0,𝑆∈S

(
E[‖𝐶 (𝑝 − 𝑥)‖1 | 𝜃, 𝑡, 𝑆, �̄�] · inf

𝑥∈�̄�⊥
E[|

𝑛∑
𝑖=1

𝑧𝑖ℎ𝑖 | | 𝜃, 𝑡, 𝑆, 𝑥]
)

( Lemma 2.4.25 )

≥ 1
2
· 𝑒−2

𝑛𝐿 (1 + 𝑅𝑚,𝑛)
· 𝜏

2
√
𝑛
( Lemma 2.4.26 and Lemma 2.4.27 ) .

(2.23)

The theorem now follows by taking the ratio of (2.22) and (2.23). □

2.4.2 Shadow bound for Laplace perturbations

Theorem 2.4.10 is most naturally used to prove shadow bounds or distributions
where all parameters are bounded, which we illustrate here for Laplace-distributed
perturbations. The Laplace distribution is defined in section 2.2. To achieve the
shadow bound, we use the abstract shadow bound as a black box, and we bound the
necessary parameters of the Laplace distribution below.

Lemma 2.4.28. For 𝑚 ≥ 𝑛 ≥ 3, the Laplace distribution 𝐿𝑛 (�̄�, 𝜎), satisfies the
following properties:

1. The density is
√
𝑛/𝜎-log-Lipschitz.

2. Its cutoff radius satisfies 𝑅𝑚,𝑛 ≤ 14𝜎
√
𝑛 log𝑚.

3. The 𝑛-th deviation satisfies 𝑟𝑚 ≤ 7𝜎 log𝑚.

4. The variance after restricting to any line satisfies 𝜏 ≥ 𝜎/√𝑛𝑒.
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Proof. By shift invariance of the parameters, we may assume w.l.o.g. that �̄� = ®0. Let
𝑋 be distributed as 𝐿𝑛 (®0, 𝜎) for use below.

1 The density of the Laplace distribution is proportional to 𝑒−‖𝑥 ‖
√
𝑛/𝜎 , for 𝑥 ∈ R𝑛,

and thus the logarithm of the density differs an additive constant from −‖𝑥‖√𝑛/𝜎,
which is clearly

√
𝑛/𝜎-Lipschitz.

2 The second property follows from Lemma 2.2.5:

Pr[‖𝑋 ‖ ≥ 14𝜎
√
𝑛 log𝑚] ≤ 𝑒−2𝑛 log𝑚 = 𝑚−2𝑛

≤ 1
𝑛
(𝑚
𝑛

) .
3 Again from Lemma 2.2.5. If 7 log𝑚 ≥ 2

√
𝑛, we get that∫ ∞

7𝜎 log𝑚
Pr[|𝑋T𝜃 | ≥ 𝑡] d𝑡 ≤

∫ ∞

7𝜎 log𝑚
𝑒−
√
𝑛𝑡/(7𝜎) d𝑡

=
7𝜎
√
𝑛
𝑚−
√
𝑛 log𝑚 ≤ 7𝜎 log𝑚

𝑚
.

If 7 log𝑚 ≤ 2
√
𝑛, then∫ ∞

7𝜎 log𝑚
Pr[|𝑋T𝜃 | ≥ 𝑡] d𝑡 =

∫ 2𝜎
√
𝑛

7𝜎 log𝑚
Pr[|𝑋T𝜃 | ≥ 𝑡] d𝑡 +

∫ ∞

2𝜎
√
𝑛

Pr[|𝑋T𝜃 | ≥ 𝑡] d𝑡

≤
∫ 2𝜎

√
𝑛

7𝜎 log𝑚
2𝑒−𝑡

2/(16𝜎2) d𝑡 +
∫ ∞

2𝜎
√
𝑛
𝑒−
√
𝑛𝑡/(7𝜎) d𝑡

≤ 4𝜎
√
𝑛𝑒−(7 log𝑚)2/16 + 7𝜎

√
𝑛
𝑒−2𝑑/7

≤ 4𝜎
√
𝑛/𝑚3 + 7𝜎/(

√
𝑛𝑚
√
𝑛) ≤ 7𝜎 log𝑚

𝑚
.

4 This follows from the
√
𝑛/𝜎-log-Lipschitzness and Lemma 2.4.7. □

Proof of Theorem 2.4.2 (Shadow bound for Laplace perturbations). We get the de-
sired result by plugging in the bounds from Lemma 2.4.28 for 𝐿, 𝑅𝑚,𝑛, 𝑟𝑚 and 𝜏
into the upper bound 𝑂 ((𝑛1.5𝐿/𝜏)(1 + 𝑅𝑚,𝑛)(1 + 𝑟𝑚)) from Theorem 2.4.10. □
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2.4.3 Shadow bound for Gaussian perturbations

In this subsection, we prove our shadow bound for Gaussian perturbations.
The Gaussian distribution is not log-Lipschitz, so we can not directly apply

Theorem 2.4.10. We will define a smoothed out version of the Gaussian distribution
to remedy this problem, which we call the Laplace-Gaussian distribution. The
Laplace-Gaussian distribution, defined below, matches the Gaussian distribution in
every meaningful parameter, while also being log-Lipschitz. We will first bound the
shadow size for Laplace-Gaussian perturbations, and then show that the expected
number of edges of 𝑄(𝐴) ∩𝑊 for Gaussian perturbations is at most 1 larger.

Definition 2.4.29. We define a random variable 𝑋 ∈ R𝑛 to be (𝜎, 𝑟)-Laplace-
Gaussian distributed with mean �̄�, or 𝑋 ∼ 𝐿𝐺𝑛 (�̄�, 𝜎, 𝑟), if its density is proportional
to 𝑓(�̄�,𝜎,𝑟 ) : R𝑛 → R+ given by

𝑓(�̄�,𝜎,𝑟 ) (𝑥) =
{
𝑒−‖𝑥−�̄� ‖

2/(2𝜎2) if ‖𝑥 − �̄�‖ ≤ 𝑟𝜎
𝑒−‖𝑥−�̄� ‖𝑟/𝜎+𝑟

2/2 if ‖𝑥 − �̄�‖ ≥ 𝑟𝜎.

Note that at ‖𝑥 − �̄�‖ = 𝑟𝜎, both cases give the density 𝑒−𝑟2/2, and hence 𝑓(�̄�,𝜎,𝑟 )
is well-defined and continuous on R𝑛. For distributions with mean ®0, we abbreviate
𝑓(𝜎,𝑟 ) := 𝑓(®0,𝜎,𝑟 ) and 𝐿𝐺𝑛 (𝜎, 𝑟) := 𝐿𝐺𝑛 (®0, 𝜎, 𝑟).

Just like for the shadow size bound for Laplace perturbations, we need strong
enough tail bounds. We state these tail bounds here, and defer their proofs till the end
of the section.

Lemma 2.4.30 (Laplace-Gaussian tail bounds). Let 𝑋 ∈ R𝑛 be (𝜎, 𝑟)-Laplace-
Gaussian distributed with mean ®0, where 𝑟 := 𝑐

√
𝑛 log𝑚, 𝑐 ≥ 4. Then for 𝑡 ≥ 𝑟 ,

Pr[‖𝑋 ‖ ≥ 𝜎𝑡] ≤ 𝑒−(1/4)𝑟𝑡 . (2.24)

For 𝜃 ∈ S𝑛−1, 𝑡 ≥ 0,

Pr[|𝑋T𝜃 | ≥ 𝜎𝑡] ≤
{
𝑒−(1/4)𝑟𝑡 : 𝑡 ≥ 𝑟
3𝑒−𝑡2/4 : 0 ≤ 𝑡 ≤ 𝑟.

(2.25)

Lemma 2.4.31. For 𝑚 ≥ 𝑛 ≥ 3, the (𝜎, 4
√
𝑛 log𝑚)-Laplace-Gaussian distribution

in R𝑛 with mean �̄� satisfies the following properties:

1. The density is 4𝜎−1√𝑛 log𝑚-log-Lipschitz.

2. Its cutoff radius satisfies 𝑅𝑚,𝑛 ≤ 4𝜎
√
𝑛 log𝑚.
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3. The 𝑛-th deviation is 𝑟𝑚 ≤ 4𝜎
√

log𝑚.

4. The variance after restricting to any line satisfies 𝜏 ≥ 𝜎/4.

Proof. As before, by shift invariance, we may assume w.l.o.g that �̄� = ®0. Let
𝑋 ∼ 𝐿𝐺𝑛 (𝜎, 4

√
𝑛 log𝑚) and let 𝑟 := 4

√
𝑛 log𝑚.

1 The gradient of the function log( 𝑓(𝜎,𝑟 ) (𝑥)) has norm bounded by 4𝜎−1√𝑛 log𝑚
wherever it is defined, which by continuity implies 𝑓(𝜎,𝑟 ) is 4𝜎−1√𝑛 log𝑚-log-
Lipschitz.

2 Applying the tail bound from Lemma 2.4.30, we get that

Pr[‖𝑋 ‖ ≥ 4𝜎
√
𝑛 log𝑚] ≤ 𝑒−4𝑛 log𝑚 ≤ 1

𝑛
(𝑚
𝑛

) .
3 Again using Lemma 2.4.30,∫ ∞

4𝜎
√

log𝑚
Pr[|𝑋T𝜃 | ≥ 𝑡] d𝑡 =

∫ 𝑟 𝜎

4𝜎
√

log𝑚
Pr[|𝑋T𝜃 | ≥ 𝑡] d𝑡 +

∫ ∞

𝑟 𝜎
Pr[|𝑋T𝜃 | ≥ 𝑡] d𝑡

≤
∫ 𝑟 𝜎

4𝜎
√

log𝑚
3𝑒−𝑡

2/(4𝜎2) d𝑡 +
∫ ∞

𝑟 𝜎
𝑒−
√
𝑛 log𝑚𝑡/𝜎 d𝑡

≤ 4𝜎
√
𝑛 log𝑚(3𝑚−4) + 𝜎√

𝑛 log𝑚
𝑚−4𝑛

≤ 4𝜎
√

log𝑚/𝑚.

4 For the line variance, by rotational symmetry, we may without loss of generality
assume that 𝑙 := (𝑦, 0) + 𝑒𝑛R, where 𝑦 ∈ R𝑛−1, and so (𝑦, 0) is the point on 𝑙 closest
to the origin. Since 𝑓(𝜎,𝑟 ) ((𝑦, 𝜆)) = 𝑓(𝜎,𝑟 ) ((𝑦,−𝜆)) for every 𝜆 ∈ R, the expectation
E[𝑋 | 𝑋 ∈ 𝑙] = (𝑦, 0). Thus, Var(𝑋 | 𝑋 ∈ 𝑙) = E[𝑋2

𝑛 | 𝑋 ∈ 𝑙].
Let 𝑙 = (𝑦, 0) + [−𝜎, 𝜎] · 𝑒𝑛. Since |𝑋𝑛 | is larger on 𝑙 \ 𝑙 than on 𝑙, we clearly

have E[𝑋2
𝑛 | 𝑋 ∈ 𝑙] ≥ E[𝑋2

𝑛 | 𝑋 ∈ 𝑙], so it suffices to lower bound the latter quantity.
For each 𝑦 with ‖𝑦‖ ≤ 𝜎𝑟 we have for all 𝜆 ∈ [−𝜎, 𝜎] the inequality

1 ≥
𝑓(𝜎,𝑟 ) ((𝑦, 𝜆))
𝑓(𝜎,𝑟 ) ((𝑦, 0))

≥ 𝑒
−‖ (𝑦,𝜆) ‖2/(2𝜎2)

𝑒−‖ (𝑦,0) ‖2/(2𝜎2)
= 𝑒−𝜆

2/(2𝜎2) ≥ 𝑒−1/2 . (2.26)
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Given the above, we have that

E[𝑋2
𝑛 | 𝑋 ∈ 𝑙] ≥ (𝜎2/4) Pr[|𝑋𝑛 | ≥ 𝜎/2 | 𝑋 ∈ 𝑙]

= (𝜎2/4)

∫ 𝜎

𝜎/2 𝑓(𝜎,𝑟 ) ((𝑦, 𝑡)) d𝑡∫ 𝜎

0 𝑓(𝜎,𝑟 ) ((𝑦, 𝑡)) d𝑡

≥ (𝜎2/4)

∫ 𝜎

𝜎/2 𝑓(𝜎,𝑟 ) ((𝑦, 0))𝑒
−1/2 d𝑡∫ 𝜎

0 𝑓(𝜎,𝑟 ) ((𝑦, 0)) d𝑡
( by (2.26) )

= (𝜎2/4)(𝑒−1/2/2) ≥ 𝜎2/16 , as needed .

(2.27)

For 𝑦 with ‖𝑦‖ ≥ 𝜎𝑟 , 𝜆 ∈ [−𝜎, 𝜎], we similarly have

‖(𝑦, 𝜆)‖ =
√
‖𝑦‖2 + 𝜆2

≤ ‖𝑦‖ + 𝜆2

2‖𝑦‖ ≤ ‖𝑦‖ +
𝜆2

2𝑟𝜎
.

In particular, we get that

1 ≥
𝑓(𝜎,𝑟 ) ((𝑦, 𝜆))
𝑓(𝜎,𝑟 ) ((𝑦, 0))

=
𝑒−‖ (𝑦,𝜆) ‖ (𝑟/𝜎)

𝑒−‖ (𝑦,0) ‖ (𝑟/𝜎)
≥ 𝑒−𝜆2/(2𝜎2) ≥ 𝑒−1/2 . (2.28)

The desired lower bound now follows by combining (2.27), (2.28). □

Given any unperturbed unit LP given by 𝑐, �̄�1, . . . , �̄�𝑚, we denote by E𝑁𝑛 (𝜎)
the expectation when its vertices are perturbed with noise distributed according to
the Gaussian distribution of standard deviation 𝜎 and we write E𝐿𝐺𝑛 (𝜎,𝑟 ) for the
expectation when its vertices are perturbed by (𝜎, 𝑟)-Laplace-Gaussian noise. The
same applies for Pr𝑁𝑛 (𝜎) and Pr𝐿𝐺𝑛 (𝜎,𝑟 ) .

In the next lemma we prove that, for 𝑟 := 4
√
𝑛 log𝑚, the expected number of

edges for Gaussian distributed perturbations is not much bigger than the expected
number for Laplace-Gaussian perturbations. We use the strong tail bounds we have
on the two distributions along with the knowledge that restricted to a ball of radius 𝑟𝜎
the probability densities are equal. Recall that we use �̂�𝑖 to denote the perturbation
𝑎𝑖 − E[𝑎𝑖].

Lemma 2.4.32. For 𝑛 ≥ 3, the number of edges in 𝑄(𝐴) ∩𝑊 satisfies

E𝑁𝑛 (𝜎) [|edges(𝑄(𝐴) ∩𝑊) |]
≤ 1 + E

𝐿𝐺𝑛 (𝜎,4
√
𝑛 log𝑚) [|edges(𝑄(𝐴) ∩𝑊) |] .
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Proof. Let us abbreviate the edge count 𝐶 (𝐴,𝑊) := |edges(𝑄(𝐴) ∩ 𝑊) | and let
𝑟 := 4

√
𝑛 log𝑚. We make use of the fact that 𝑁𝑛 (𝜎) and 𝐿𝐺𝑛 (𝜎, 𝑟) are equal when

restricted to distance at most 𝜎𝑟 from their centers.

E𝑁 (𝜎) [𝐶 (𝐴,𝑊)] (2.29)
= Pr
𝑁𝑛 (𝜎)

[∃𝑖 ∈ [𝑚] ‖�̂�𝑖 ‖ > 𝜎𝑟]E𝑁𝑛 (𝜎) [𝐶 (𝐴,𝑊) | ∃𝑖 ∈ [𝑚] ‖�̂�𝑖 ‖ > 𝜎𝑟]

+ Pr
𝑁𝑛 (𝜎)

[∀𝑖 ∈ [𝑚] ‖�̂�𝑖 ‖ ≤ 𝜎𝑟]E𝑁𝑛 (𝜎) [𝐶 (𝐴,𝑊) | ∀𝑖 ∈ [𝑚] ‖�̂�𝑖 ‖ ≤ 𝜎𝑟] .

(2.30)

By Lemma 2.4.30, the first probability is at most 𝑚−4𝑛 ≤ 𝑚−𝑛/4, so we upper bound
the first number of edges by

(𝑚
𝑛

)
making a total contribution of less than 1/4. Now

we use the fact that within radius 4𝜎
√
𝑛 log𝑚 we have equality of densities between

𝑁𝑛 (𝜎) and 𝐿𝐺𝑛 (𝜎, 𝑟). Continuing from (2.30),

≤ 1/4 + E𝑁𝑛 (𝜎) [𝐶 (𝐴,𝑊) | ∀𝑖 ∈ [𝑚] ‖�̂�𝑖 ‖ ≤ 𝜎𝑟]
= 1/4 + E𝐿𝐺𝑛 (𝜎,𝑟 ) [𝐶 (𝐴,𝑊) | ∀𝑖 ∈ [𝑚] ‖�̂�𝑖 ‖ ≤ 𝜎𝑟]
≤ 1/4 + E𝐿𝐺𝑛 (𝜎,𝑟 ) [𝐶 (𝐴,𝑊)]/ Pr

𝐿𝐺𝑛 (𝜎,𝑟 )
[∀𝑖 ∈ [𝑚] ‖�̂�𝑖 ‖ ≤ 𝜎𝑟] . (2.31)

The inequality above is true by non-negativity of the number of edges. Next we lower
bound the denominator and continue (2.31),

≤ 1/4 + E𝐿𝐺𝑛 (𝜎,𝑟 ) [𝐶 (𝐴,𝑊)]/(1 − 𝑚−𝑛/4)
≤ 1/4 + (1 + 𝑚−𝑛/2)E𝐿𝐺𝑛 (𝜎,𝑟 ) [𝐶 (𝐴,𝑊)] . (2.32)

The last inequality we deduce from the fact that (1− 𝜀)(1 + 2𝜀) = 1 + 𝜀 − 2𝜀2, which
is bigger than 1 for 0 < 𝜀 < 1/2. Again using the trivial upper bound of

(𝑚
𝑛

)
edges,

we arrive at our desired conclusion that

E𝑁𝑛 (𝜎) [𝐶 (𝐴,𝑊)] ≤ 1 + E𝐿𝐺𝑛 (𝜎,𝑟 ) [𝐶 (𝐴,𝑊)] . □

We now have all the ingredients to prove our bound on the expected number of
edges for Gaussian perturbations.

Proof of Theorem 2.4.1 (Shadow bound for Gaussian perturbations).
By Lemma 2.4.32, we know that

E𝑁𝑛 (𝜎) [|edges(𝑄(𝐴) ∩𝑊) |]
≤ 1 + E

𝐿𝐺𝑛 (𝜎,4
√
𝑛 log𝑚) [|edges(𝑄(𝐴) ∩𝑊) |] .

We now derive the shadow bound for Laplace-Gaussian perturbations by combining
the parameter bounds in Lemma 2.4.31 with the parameterized shadow bound in
Theorem 2.4.10. □
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We now prove the tail bounds for Laplace-Gaussian distributions. Recall that we
set 𝑟 := 𝑐

√
𝑛 log𝑚 with 𝑐 ≥ 4.

Proof of Lemma 2.4.30 (Tail bound for Laplace-Gaussian distribution). By homoge-
neity, we may w.l.o.g. assume that 𝜎 = 1. Define auxiliary random variables 𝑌 ∈ R𝑛
distributed as (®0, 1/(𝑐

√
log𝑚))-Laplace and 𝑍 ∈ R𝑛 be distributed as 𝑁𝑛 (®0, 1).

Since 𝑋 has density proportional to 𝑓(1,𝑟 ) (𝑥), which equals 𝑒−‖𝑥 ‖2/2 for ‖𝑥‖ ≤ 𝑟
and 𝑒−𝑟 ‖𝑥 ‖+𝑟2/2 for ‖𝑥‖ ≥ 𝑟 , we immediately see that

𝑍 | ‖𝑍 ‖ ≤ 𝑟 ≡ 𝑋 | ‖𝑋 ‖ ≤ 𝑟
𝑌 | ‖𝑌 ‖ ≥ 𝑟 ≡ 𝑋 | ‖𝑋 ‖ ≥ 𝑟

(2.33)

Proof of (2.24) By the above, for any 𝑡 ≥ 𝑟, we have that

Pr[‖𝑋 ‖ ≥ 𝑡] = Pr[‖𝑌 ‖ ≥ 𝑡] · Pr[‖𝑋 ‖ ≥ 𝑟]
Pr[‖𝑌 ‖ ≥ 𝑟] . (2.34)

For the first term, by the Laplace tail bound (2.9), we get that

Pr[‖𝑌 ‖ ≥ 𝑡] ≤ 𝑒−𝑟𝑡−𝑛 log( 𝑐
√

log𝑚𝑡√
𝑛
)−𝑛 . (2.35)

For the second term,

Pr[‖𝑋 ‖ ≥ 𝑟]
Pr[‖𝑌 ‖ ≥ 𝑟] = 𝑒

𝑟2/2

∫
R𝑛 𝑒

−𝑟 ‖𝑥 ‖ d𝑥∫
R𝑛 𝑓(𝜎,𝑟 ) (𝑥) d𝑥

≤ 𝑒𝑟2/2

∫
R𝑛 𝑒

−𝑟 ‖𝑥 ‖ d𝑥∫
R𝑛 𝑒−‖𝑥 ‖

2/2 d𝑥

≤ 𝑒𝑟2/2 𝑟
−𝑛𝑛!vol𝑛 (B𝑛2 )√

2𝜋
𝑛 ≤ 𝑒 (𝑛𝑐2 log𝑚)/2(

√
𝑒

𝑐
√

log𝑚
)𝑛

≤ 𝑒 (𝑛𝑐2 log𝑚)/2 ,

(2.36)

where we have used the upper bound vol𝑛 (B𝑛2 ) ≤ (2𝜋𝑒/𝑛)
𝑛/2, 𝑟 = 𝑐

√
𝑛 log𝑚 and

𝑐 ≥ √𝑒. Combining (2.35), (2.36) and that 𝑡 ≥ 𝑟 , 𝑐 ≥ 4, we get

Pr[‖𝑋 ‖ ≥ 𝑡] ≤ 𝑒−𝑟𝑡−𝑛 log( 𝑐
√

log𝑚𝑡√
𝑛
)−𝑛 · 𝑒 (𝑛𝑐2 log𝑚)/2

≤ 𝑒−𝑟𝑡/2−𝑛 log( 𝑐
√

log𝑚𝑡√
𝑛
)−𝑛

= 𝑒−𝑛(
𝑟𝑡
2𝑛−log( 𝑟𝑡𝑛 )−1)

≤ 𝑒−𝑛( 𝑟𝑡4𝑛 ) = 𝑒−𝑟𝑡/4,

(2.37)

where the last inequality follows from 𝑥/2− log(𝑥) −1 ≥ 𝑥/4, for 𝑥 ≥ 𝑟𝑡/𝑛 ≥ 𝑐2 ≥ 16.
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Proof of (2.25) For 𝑡 ≥ 𝑟 , using the bound (2.24), we get

Pr[|𝑋T𝜃 | ≥ 𝑡] ≤ Pr[‖𝑋 ‖ ≥ 𝑡] ≤ 𝑒−𝑐
√
𝑛 log𝑚𝑡/4 . (2.38)

For 𝑡 ≤ 𝑟, we see that

Pr[|𝑋T𝜃 | ≥ 𝑡] ≤ Pr[|𝑋T𝜃 | ≥ 𝑡, ‖𝑋 ‖ ≤ 𝑟] + Pr[‖𝑋 ‖ ≥ 𝑟]
≤ Pr[|𝑋T𝜃 | ≥ 𝑡, ‖𝑋 ‖ ≤ 𝑟] + 𝑒−𝑟2/4 .

(2.39)

By the identity (2.33), for the first term, using the Gaussian tail bound (2.8), we have
that

Pr[|𝑋T𝜃 | ≥ 𝑡, ‖𝑋 ‖ ≤ 𝑟] = Pr[|𝑍T𝜃 | ≥ 𝑡, ‖𝑍 ‖ ≤ 𝑟] · Pr[‖𝑋 ‖ ≤ 𝑟]
Pr[‖𝑍 ‖ ≤ 𝑟]

= Pr[|𝑍T𝜃 | ≥ 𝑡, ‖𝑍 ‖ ≤ 𝑟] ·
∫
R𝑛 𝑒

−‖𝑥 ‖2/2 d𝑥∫
R𝑛 𝑓(1,𝑟 ) (𝑥) d𝑥

≤ Pr[|𝑍T𝜃 | ≥ 𝑡] ≤ 2𝑒−𝑡
2/2 .

(2.40)

The desired inequality (2.25) now follows directly by combining (2.38), (2.39), (2.40),
noting that 2𝑒−𝑡2/2 + 𝑒−𝑟2/4 ≤ 3𝑒−𝑡2/4 for 0 ≤ 𝑡 ≤ 𝑟 . □

2.5 Analyzing Simplex Algorithms

In this section, we describe how to use the shadow bound to bound the complexity
of a complete shadow vertex simplex based algorithm. We will follow the two-stage
interpolation strategy given by Vershynin in [200], and describe its usage with the
dimension-by-dimension algorithm [28] as well as a faster variant of the Random
Vertex algorithm from [200].

We will say that (Smoothed LP) is unbounded if the system 𝑐T𝑥 > 0, 𝐴𝑥 ≤ ®0
is feasible, and bounded if this system is infeasible. Note that, under this definition,
(Smoothed LP) can be simultaneously unbounded and infeasible under this definition.
In that case, we are satisfied if an algorithm reports that the program is unbounded. If
(Smoothed LP) is both bounded and feasible, then it has an optimal feasible solution.

For the execution of the algorithms as stated, we assume the non-degeneracy
conditions listed in Theorem 2.2.11. That is, we assume both the feasible polyhedron
and shadows to be non-degenerate. These conditions hold with probability 1.
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2.5.1 Two-Phase Interpolation Method

We wish to apply the shadow vertex method to LP’s with 𝑏 = ®1. To reduce solving
any LP to this case, first define the Phase I Unit LP:

max 𝑐T𝑥 (Unit LP)

𝐴𝑥 ≤ ®1

and the Phase II interpolation LP with parametric objective for 𝜃 ∈ (−𝜋/2, 𝜋/2):

max cos(𝜃)𝑐T𝑥 + sin(𝜃)𝜆 (Int. LP)

𝐴𝑥 + (®1 − 𝑏)𝜆 ≤ ®1
0 ≤ 𝜆 ≤ 1.

The above form of interpolation was first introduced in the context of smoothed
analysis by Vershynin [200].

Let us assume for the moment that (Smoothed LP) is bounded and feasible (i.e., has
an optimal solution). Since boundedness is a property of 𝐴 and not 𝑏, note that this
implies that (Unit LP) is also bounded (and clearly always feasible).

To understand the Phase II interpolation LP, the key observation is that for 𝜃
sufficiently close to −𝜋/2, the maximizer will be the optimal solution to (Unit LP),
i.e., will satisfy 𝜆 = 0, and for 𝜃 sufficiently close to 𝜋/2 the maximizer will be the
optimal solution to (Smoothed LP), i.e., will satisfy 𝜆 = 1. Thus given an optimal
solution to the Phase I unit LP one can initialize a run of shadow vertex starting at 𝜃
just above −𝜋/2, moving towards 𝜋/2 until the optimal solution to (Smoothed LP) is
found. The corresponding shadow plane is generated by (𝑐, 0) and (®0, 1) (associating
𝜆 with the last coordinate), and as usual the size of the shadow bounds the number of
pivots.

If (Smoothed LP) is unbounded (i.e., the system 𝑐T𝑥 > 0, 𝐴𝑥 ≤ ®0 is feasible),
this will be detected during Phase I as (Unit LP) is also unbounded. If (Smoothed
LP) is infeasible but bounded, then the shadow vertex run will terminate at a vertex
having 𝜆 < 1. Thus, all cases can be detected by the two-phase procedure (see [200,
Proposition 4.1] for a formal proof).

We bound the number of pivot steps taken to solve (Int. LP) given a solution to
(Unit LP), and after that we describe how to solve (Unit LP).

Consider polyhedron 𝑃′ = {(𝑥, 𝜆) ∈ R𝑛+1 : 𝐴𝑥 + (®1 − 𝑏)𝜆 ≤ ®1}, the slab
𝐻 = {(𝑥, 𝜆) ∈ R𝑛+1 : 0 ≤ 𝜆 ≤ 1} and let𝑊 = span(𝑐, 𝑒𝑛+1). In this notation, 𝑃′ ∩ 𝐻
is the feasible set of (Int. LP) and 𝑊 is the shadow plane of (Int. LP). We know that
it suffices to bound the number of vertices of 𝜋𝑊 (𝑃′ ∩ 𝐻) of (Int. LP), which we do
by relating it to 𝜋𝑊 (𝑃′).
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The constraints defining 𝑃′ are of smoothed unit type. Namely, the rows of
(𝐴, ®1− 𝑏) are variance 𝜎2 Gaussians centered at means of norm at most 2. We derive
this from the triangle inequality. Thus, we know 𝜋𝑊 (𝑃′) has at mostD𝑔 (𝑛+1, 𝑚, 𝜎/2)
expected vertices, where we denote byD𝑔 (·, ·, ·) the upper bound from Theorem 2.4.1.
We divided 𝜎 by 2 because to apply the shadow bound we first scale down the data
such that the expected rows have norm at most 1.

Since the shadow plane contains the normal vector (®0, 1) to the inequalities
0 ≤ 𝜆 ≤ 1, these constraints intersect the shadow plane 𝑊 at right angles. It
follows that 𝜋𝑊 (𝑃′ ∩ 𝐻) = 𝜋𝑊 (𝑃′) ∩ 𝐻. Adding 2 constraints to a 2D polyhedron
can add at most 2 new edges, hence the constraints on 𝜆 can add at most 4 new
vertices. By combining these observations, we directly derive the following lemma
of Vershynin [200].

Lemma 2.5.1. If (Unit LP) is unbounded, then (Smooth LP) is unbounded. If (Unit
LP) is bounded, then given an optimal solution to (Unit LP) one can solve (Smoothed
LP) using at most an expected D𝑔 (𝑛 + 1, 𝑚, 𝜎/2) + 4 shadow vertex pivots over
(Int. LP).

Given the above, our main task is now to solve (Unit LP), i.e., either to find
an optimal solution or to determine unboundedness. The simplest algorithm is
Borgwardt’s dimension-by-dimension (DD) algorithm, which was first used in the
context of smoothed analysis by Schnalzger [168].

2.5.2 DD algorithm

As outlined in the introduction, the DD algorithm solves (Unit LP) by iteratively
solving the restrictions:

max (𝑐𝑘)T𝑥 (Unit LP𝑘)

𝐴𝑥 ≤ ®1
𝑥𝑖 = 0, ∀𝑖 ∈ {𝑘 + 1, . . . , 𝑛},

where 𝑘 ∈ [𝑛] and 𝑐𝑘 := (𝑐1, . . . , 𝑐𝑘 , 0, . . . , 0). The main idea here is that the
solution of (Unit LP𝑘), 𝑘 ∈ [𝑛 − 1], is generically on an edge of the shadow of (Unit
LP𝑘+1) on the span of 𝑐𝑘 and 𝑒𝑘+1, which is sufficient to initialize the shadow simplex
path in the next step. We note that Borgwardt’s algorithm can be applied to any LP
with a known feasible point as long as appropriate non-degeneracy conditions hold
(which occur with probability 1 for smoothed LPs). To avoid degeneracy, we will
assume that 𝑐𝑘 ≠ ®0 for all 𝑘 ∈ [𝑛], which can always be achieved by permuting the
coordinates. Note that (Unit LP1) can be trivially solved, as the feasible region is an
interval whose endpoints are easy to compute.
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Theorem 2.5.2 ([27]). Let 𝑊𝑘 , 𝑘 ∈ {2, . . . , 𝑛}, denote the shadow of (Unit LP𝑘)
on the span of 𝑐𝑘−1 and 𝑒𝑘 . Then, if each (Unit LP𝑘) and shadow 𝑊𝑘 is non-
degenerate, for 𝑘 ∈ {2, . . . , 𝑛}, the DD algorithm solves (Unit LP) using at most∑𝑛
𝑘=2 |vertices(𝑊𝑘) | number of pivots.

Using the shadow bound of Theorem 2.4.1 for 𝑛 ≥ 3 and the 𝑂 (1/𝜎 +
√

log𝑚)
bound for 𝑛 = 2 (Chapter 2) we immediately derive the following corollary.

Corollary 2.5.3. The smoothed (Unit LP) can be solved by the DD algorithm using
an expected ∑𝑛

𝑘=2 D𝑔 (𝑘, 𝑚, 𝜎) = 𝑂 (𝑛
3√log𝑚 𝜎−2 + 𝑛3.5𝜎−1 log𝑚 + 𝑛3.5 log(𝑚)1.5)

number of shadow vertex pivots.

Combining Lemma 2.5.1 and Corollary 2.5.3 we find the conclusion of this
subsection:

Theorem 2.5.4. (Smoothed LP) can be solved by a two-phase shadow simplex
method using an expected number of pivots of 𝑂 (𝑛3√log𝑚 𝜎−2 + 𝑛3.5𝜎−1 log𝑚 +
𝑛3.5 log(𝑚)1.5).

2.5.3 Random vertex method

Another procedure for solving (Unit LP) can be found in [200]. In that reference, the
approach for initializing the shadow simplex method on (Unit LP) is to add a random
smoothed system of 𝑛 linear constraints to its description. These constraints are
meant to induce a known random vertex 𝑣 and corresponding maximizing objective 𝑑
which are effectively uncorrelated with the original system. Starting at this vertex 𝑣,
we then follow the shadow path induced by rotating 𝑑 towards 𝑐. The main difficulty
with this approach is to guarantee that the randomly generated system:

(i) adds a vertex

(ii) which is optimized at 𝑑, and

(iii) does not cut off the optimal solution or all unbounded rays.

Fortunately, each of these conditions is easily checkable, and hence if they fail (which
will occur with constant probability), the process can be attempted again.

One restriction imposed by this approach is that the perturbation size needs to be
rather small, namely

𝜎 ≤ 𝜎1 :=
𝑐1

max{
√
𝑛 log𝑚, 𝑛1.5 log𝑚}

in [200] for some 𝑐1 > 0. A more careful analysis can relax the restriction to

𝜎 ≤ 𝜎2 :=
𝑐2

max{
√
𝑛 log𝑚,

√
𝑛 log 𝑛}
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for some 𝑐2 > 0. This restriction is necessary due to the fact that we wish to predict
the effect of smoothing the added constraints. In particular, the smoothing operation
should not negate (i), (ii), or (iii). Recall that one can always artificially decrease
𝜎 by scaling down the matrix 𝐴 as this does not change the structure of (Unit LP).
The assumption on 𝜎 is thus without loss of generality. When stating running time
bounds however, this restriction will be reflected by a larger additive term that does
not depend on 𝜎.

We adapt the Random Vertex algorithm to make (ii) guaranteed to hold, allowing
us to relax the constraint on the perturbation size to

𝜎 ≤ �̄� :=
1

36
√
𝑛 log𝑚

. (2.41)

Instead of adding 𝑛 constraints, each with their own perturbation, we add 𝑛 − 1 pairs
of constraints with mirrored perturbations. This forces the desired objective to be
maximized at the random vertex whenever this vertex exists.

Our algorithm is printed as Algorithm 2. We begin with some preliminary
remarks. First, the goal of defining 𝑉 is to create a new artificial LP, (Unit LP’)
max 𝑐T𝑥, 𝐴𝑥 ≤ ®1, 𝑉𝑥 ≤ ®1, such that 𝑥0 is a vertex of the corresponding system which
maximizes 𝑑. On line 9 and 10, the algorithm checks if 𝑥0 is feasible and whether it is
not the optimizer of 𝑐 on (Unit LP’). Having passed these checks, (Unit LP’) is solved
via shadow vertex initialized at vertex 𝑥0 with objective 𝑑. An unbounded solution to
(Unit LP’) is always an unbounded solution to (Unit LP). Lastly, it is checked on line
13 whether the bounded solution (if it exists) to (Unit LP’) is a solution to (Unit LP).
Correctness of the algorithm’s output is thus straightforward. We do have to make
sure that every step of the algorithm can be executed as described.

Lemma 2.5.5. In (Unit LP’) as defined on lines 3-11 of Algorithm 2, with probability
1, 𝑥0 is well-defined, and, when entering the shadow simplex routine, the point 𝑥0 is a
shadow vertex and the edge defined by 𝐵0 is a shadow edge on (Unit LP’). Moreover,
𝑥0 is the only degenerate vertex.

Proof. Without loss of generality, we assume 𝑅 = 𝐼𝑛×𝑛. With probability 1, the
coefficients 𝜆1, . . . , 𝜆𝑛 exist and are uniquely defined.

We now show that 𝑥0 is well-defined. Let 𝑥+0 be the solution to the following
system of 𝑛 equalities

𝑣+1
T𝑥+0 = 1, 𝑣+2

T𝑥+0 = 1, . . . , 𝑣+𝑛−1
T𝑥+0 = 1, 8𝑒𝑛T𝑥+0 = 2. (2.42)

This system of equations almost surely has a single solution. We claim that 𝑉𝑥+0 = ®1.
By writing 𝑣−𝑖 = 8𝑒𝑛 − 𝑣+𝑖 , we find that 𝑣−𝑖

T𝑥+0 = 1 for all 𝑖 ∈ [𝑛 − 1]. Therefore,
𝑥0 = 𝑥+0 is indeed well-defined.
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Algorithm 2 Symmetric Random Vertex algorithm

Input: 𝑐 ∈ R𝑛 \ {®0}, 𝐴 ∈ R𝑚×𝑛, 𝐴 is standard deviation 𝜎 ≤ �̄� Gaussian with rows
having centers of norm at most 1.

Output: Decide whether (Unit LP) max 𝑐T𝑥, 𝐴𝑥 ≤ ®1 is unbounded or return an
optimal solution.

1: If some row of 𝐴 has norm greater than 2, solve max 𝑐T𝑥, st. 𝐴𝑥 ≤ ®1 using any
simplex method that takes at most

(𝑚
𝑛

)
pivot steps.

2: loop
3: Let 𝑙 = 1/6

√
log 𝑛.

4: Sample a rotation matrix 𝑅 ∈ 𝑂 (𝑛) uniformly at random.
5: Sample 𝑔1, . . . , 𝑔𝑛−1 ∼ 𝑁 (®0, 𝜎2𝐼) independently.
6: Set 𝑣+𝑖 = 𝑅(4𝑒𝑛 + 𝑙𝑒𝑖 + 𝑔𝑖), 𝑣−𝑖 = 𝑅(4𝑒𝑛 − 𝑙𝑒𝑖 − 𝑔𝑖) for all 𝑖 ∈ [𝑛 − 1].
7: Put 𝑉 = (𝑣+1 , 𝑣−1 , 𝑣+2 , . . . , 𝑣+𝑛−1, 𝑣

−
𝑛−1)T, 𝑑 = 𝑅𝑒𝑛.

8: Find 𝑥0 such that 𝑉𝑥0 = ®1.
9: If not 𝐴𝑥0 < ®1, restart the loop.

10: Solve ∑𝑛−1
𝑖=1 𝜆𝑖𝑅(𝑙𝑒

𝑖 + 𝑔𝑖) = 𝑐 + 𝜆𝑛𝑑. If 𝜆𝑛 +
∑𝑛−1
𝑖=1 4|𝜆𝑖 | ≤ 0, restart the loop.

(This corresponds to 𝑥0 being optimal for 𝑐.)
11: Follow the shadow path from 𝑑 to 𝑐 on

max 𝑐T𝑥

𝐴𝑥 ≤ ®1 (Unit LP’)

𝑉𝑥 ≤ ®1,

starting from the vertex 𝑥0. For the first pivot, follow the edge which is tight at
the constraints in 𝐵0 = (𝑣sign(𝜆1)

1 , . . . , 𝑣
sign(𝜆𝑛−1)
𝑛−1 ). All other pivot steps are as in

Algorithm 1.
12: If (Unit LP’) is unbounded, return “unbounded”.
13: If (Unit LP’) is bounded and the optimal vertex 𝑥∗ satisfies 𝑉𝑥∗ < ®1, return

𝑥∗ as the optimal solution to (Unit LP).
14: Otherwise, restart the loop.
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By definition, upon entering the shadow simplex routine, 𝑥0 satisfies 𝐴𝑥 < ®1,
𝑉𝑥 ≤ ®1 and is thus a vertex.

For all 𝑡 > 0, define 𝑥𝑡 to be the solution to 8𝑒𝑛T𝑥𝑡 = 2 − 𝑡, 𝐵0𝑥𝑡 = ®1. For any
𝑣𝑠𝑖 ∉ 𝐵0, we have 𝑣𝑠𝑖

T𝑥𝑡 = 1 − 𝑡 < 1. As the 𝑥𝑡 lie on a line and 𝐴𝑥0 < ®1, there exists
some 𝜀 > 0 such that 𝑥𝑡 is feasible for all 𝑡 ≤ 𝜀. Hence the constraints in 𝐵0 define
an edge of the feasible set.

The point 𝑥0 is tight at the inequalities 𝑉𝑥 ≤ ®1, and 1
8𝑛−8

∑𝑛−1
𝑖=1 (𝑣

+
𝑖 + 𝑣−𝑖 ) = 𝑑

certifies that 𝑑 lies in the normal cone at 𝑥0, so we know that 𝑥0 is optimal for
objective 𝑑 and thus a shadow vertex.

Assume that 𝑥0 is not optimal for objective 𝑐. One outgoing edge of 𝑥0 is tight at
the inequalities 𝑣𝑠𝑖

T𝑥 ≤ 1 for all 𝑣𝑠𝑖 ∈ 𝐵0 and that edge is on the shadow path exactly if
the cone spanned by 𝐵0 intersects cone(𝑐, 𝑑) outside {0}. This intersection is exactly
the ray spanned by

𝑛−1∑
𝑖=1
|𝜆𝑖 |𝑣sign(𝜆𝑖)

𝑖 =
𝑛−1∑
𝑖=1

𝜆𝑖𝑅(𝑙𝑒𝑖 + 𝑔𝑖) + 4|𝜆𝑖 |𝑑

= 𝑐 + 𝜆𝑛𝑑 +
𝑛−1∑
𝑖=1

4|𝜆𝑖 |𝑑,

and we know that 𝜆𝑛 +
∑𝑛−1
𝑖=1 4|𝜆𝑖 | > 0 as otherwise we could rewrite the above

equation to certify that 𝑐 ∈ cone(𝑉𝜆 : 𝜆 ∈ R𝑛+), which would contradict 𝑥0 not being
optimal for objective 𝑐. We conclude that ∑𝑛−1

𝑖=1 |𝜆𝑖 |𝑣
sign(𝜆𝑖)
𝑖 is a non-negative linear

combination of 𝑐, 𝑑 and hence our description of the first shadow vertex pivot step is
correct.

Lastly, we show that any vertex other than 𝑥0 is tight at exactly 𝑛 independently
distributed constraint vectors. Fix any basis 𝐵 such that there exists an 𝑖 ∈ [𝑛−1] with
𝑣+𝑖 , 𝑣

−
𝑖 ∈ 𝐵 and which does not define the vertex 𝑥0. Let 𝑥𝐵 be such that 𝑎T𝑥𝐵 = 1 for

all 𝑎 ∈ 𝐵. There exists some 𝑗 ∈ [𝑛 − 1] such that both 𝑣+𝑗 , 𝑣
−
𝑗 ∉ 𝐵, for otherwise we

would have 𝑥𝐵 = 𝑥0. We show that, almost surely, 𝑣+𝑗
T𝑥𝐵 > 1 or 𝑣−𝑗

T𝑥𝐵 > 1, which
implies that 𝑥𝐵 is almost surely not feasible. We know that 𝑣+𝑖

T𝑥𝐵 = 𝑣−𝑖
T𝑥𝐵 = 1,

and hence 4𝑑T𝑥𝐵 = 1. It follows that 𝑣+𝑗
T𝑥𝐵 = 2 − 𝑣−𝑗 T𝑥𝐵, The only way to have

both 𝑣+𝑗
T𝑥𝐵 ≤ 1 and 𝑣−𝑗

T𝑥𝐵 ≤ 1 would be if 𝑣+𝑗
T𝑥𝐵 = 1. However, 𝑥𝐵 and 𝑣+𝑗 are

independently distributed and 𝑣+𝑗 has a continuous probability distribution, so 𝑥𝐵 is a
vertex with probability 0. □

To bound the expected running time of Algorithm 2, we bound the expected
number of pivot steps per iteration of the loop, and the expected number of iterations
of the loop.
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First, we bound the expected shadow size in a single iteration. Because the
constraint vectors 𝑣+𝑖 , 𝑣

−
𝑖 are not independently distributed for any 𝑖 ∈ [𝑛 − 1], we are

unable to apply Theorem 2.4.1 in a completely black-box way. As we show below,
in this new setting, the proof of Theorem 2.4.1 still goes through essentially without
modification.

In the rest of this section, we abbreviate

conv(𝐴,𝑉) := conv(𝑎1, . . . , 𝑎𝑚, 𝑣
+
1 , . . . , 𝑣

+
𝑛−1, 𝑣

−
1 , . . . , 𝑣

−
𝑛−1).

Lemma 2.5.6. Let 𝐴 have independent standard deviation 𝜎 Gaussian rows with
centers of norm at most 1 and let𝑉 be sampled, independently from 𝐴, as in lines 4-7
of Algorithm 2 with 𝑙 ≤ 1. The shadow size E[|edges(conv(𝐴,𝑉) ∩ span(𝑐, 𝑑)) |] is
bounded by D𝑔 (𝑛, 𝑚 + 2𝑛 − 2,min(𝜎, �̄�)/5) + 1.

Proof. We fix the choice of 𝑅. The distribution of constraint vectors is now indepen-
dent of the two-dimensional plane by the following formula:

E[|edges(conv(𝐴,𝑉)∩span(𝑐, 𝑑)) |] ≤ max
𝑅

E[|edges(conv(𝐴,𝑉)∩span(𝑐, 𝑑)) | | 𝑅] .

The rows of 𝐴 have centers of norm at most 1 and the rows of 𝑉 have centers of
norm at most 4 + 𝑙 ≤ 5. After an appropriate rescaling, we can assume all 𝑛 + 2𝑑 − 2
constraints have expectations of norm at most 1 and standard deviation 𝜎 ≤ �̄�/5.

To get the desired bound, we bound the number of edges other than the one
induced by 𝑥0,𝑊 ∩ {𝑦 ∈ R𝑛 : 𝑦T𝑥0 = 1}, which yields the +1 in the final bound. The
proof is essentially identical to that of Theorem 2.4.1, i.e. we bound the ratio of the
expected perimeter divided by the minimum expected edge of the polar polygon. We
sketch the key points below. Firstly, notice that the perimeter bound in Lemma 2.4.14
does not require independence of the perturbations, so it still holds. For the minimum
edge length, we restrict to the bases 𝐵 as in Lemma 2.4.13 (which also does not require
independence) after removing those which induce 𝑥0 as a vertex (it has already been
counted). By Lemma 2.5.5, the remaining bases in 𝐵 contain at most one of each pair
{𝑣−𝑖 , 𝑣+𝑖 }, 𝑖 ∈ [𝑛 − 1], since bases containing two such vectors correspond to an edge
different from the one induced by 𝑥0 with probability 0. In particular, every basis we
need to consider consists of only independent random vectors.

From here, the only remaining detail for the bound to go through is to to check
that the conclusion of Lemma 2.4.19 still holds, i.e., that the position of vectors within
their containing hyperplane does not affect the probability that these vectors form a
facet of the convex hull. Without loss of generality, we consider the vectors 𝑎1, . . . , 𝑎𝑖 ,
𝑣+1 , . . . , 𝑣

+
𝑗 with 𝑖 + 𝑗 = 𝑛. Define 𝜃 ∈ S𝑛−1, 𝑡 ≥ 0 by 𝜃T𝑎𝑘 = 𝑡 for all 𝑘 ∈ [𝑖], 𝜃T𝑣+𝑘 = 𝑡

for all 𝑘 ∈ [ 𝑗]. The set conv(𝑎1, . . . , 𝑎𝑖 , 𝑣
+
1 , . . . , 𝑣

+
𝑗 ) is a facet of the convex hull of

the constraint vectors when either (1) 𝜃T𝑎𝑘 < 𝑡 for all 𝑘 > 𝑖, 𝜃T𝑣−𝑘 < 𝑡 for all 𝑘 ∈ [ 𝑗]
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and 𝜃T𝑣±𝑘 < 𝑡 for all 𝑘 > 𝑗 or (2) when 𝜃T𝑎𝑘 > 𝑡 for all 𝑘 > 𝑖, 𝜃T𝑣−𝑘 > 𝑡 for all 𝑘 ∈ [ 𝑗]
and 𝜃T𝑣±𝑘 > 𝑡 for all 𝑘 > 𝑗 . The only one of these properties that is not independent of
𝑎1, . . . , 𝑎𝑖 , 𝑣

+
1 , . . . , 𝑣

+
𝑗 is whether 𝜃T𝑣−𝑘 < 𝑡 or 𝜃T𝑣−𝑘 > 𝑡 for 𝑘 ∈ [ 𝑗], but we know that

𝜃T𝑣−𝑘 = 8𝜃T𝑑−𝜃T𝑣+𝑘 = 8𝜃T𝑑− 𝑡 for all 𝑘 ∈ [ 𝑗], and so the value 𝜃T𝑣−𝑘 does not depend
on the positions of 𝑎1, . . . , 𝑎𝑖 , 𝑣

+
1 , . . . , 𝑣

+
𝑗 within their containing hyperplane. Hence

the proof of Theorem 2.4.1 still goes through and we conclude that the expected
number of edges is bounded by D𝑔 (𝑛, 𝑚 + 2𝑛 − 2,min(𝜎, �̄�)/5) + 1. □

All that is left, is to show that the success probability of each loop is lower
bounded by a constant.

Definition 2.5.7. For a matrix 𝑀 ∈ R𝑛×𝑛, we define its operator norm by

‖𝑀 ‖ = max
𝑥∈R𝑛\{®0}

‖𝑀𝑥‖
‖𝑥‖

and its maximum and minimum singular values by

𝑠max(𝑀) = ‖𝑀 ‖, 𝑠min(𝑀) = min
𝑥∈R𝑛\{®0}

‖𝑀𝑥‖
‖𝑥‖ .

Using the Gaussian tailbound (2.7) together with a 1/2-net on the sphere we
immediately obtain the following tail bound for the operator norm of random Gaussian
matrices.

Lemma 2.5.8. For a random 𝑛 × 𝑛 matrix 𝐺 with independent standard normal
entries, one has

Pr[‖𝐺‖ > 2𝑡
√
𝑛] ≤ 8𝑛𝑒−𝑛(𝑡−1)2/2.

Proof. Let 𝑁 ⊆ S𝑛−1 be a 1/2-net of minimal size, which has size at most 8𝑛, see
e.g., [136], page 314. For each 𝑣 ∈ 𝑁 we observe that 𝐺𝑣 ∈ R𝑛 is distributed as
𝑁𝑛 (®0, 𝜎). By (2.7) and the union bound, we find that ‖𝐺𝑣‖ > 𝑡√𝑛 with probability
at most 8𝑛𝑒−𝑛(𝑡−1)2/2.

Now let 𝑤 ∈ S𝑛−1 satisfy ‖𝐺𝑤‖ = ‖𝐺‖ and pick 𝑣 ∈ 𝑁 such that ‖𝑣 − 𝑤‖ ≤ 1/2.
We get

‖𝐺‖ = ‖𝐺𝑤‖ ≤ ‖𝐺𝑣‖ + ‖𝐺‖‖𝑤 − 𝑣‖ ≤ 𝑡
√
𝑛 + ‖𝐺‖/2

with probability at least 1 − 8𝑛𝑒−𝑛(𝑡−1)2/2. The result follows after rearranging. □

Lemma 2.5.9. Let 𝐴 ∈ R𝑚×𝑛 have rows of norm at most 2 and 𝜎 ≤ 𝑙
6
√
𝑛
. For 𝑥0

sampled as in lines 4-8 of Algorithm 2, with probability at least 0.98, the point 𝑥0
satisfies 𝐴𝑥0 < ®1.
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Proof. Without loss of generality, we assume 𝑅 = 𝐼𝑛×𝑛. We claim that, with suffi-
cient probability, ‖𝑥0 − 𝑒𝑛/4‖ < 1/4. Together with the triangle inequality and the
assumption that ‖𝑎𝑖 ‖ ≤ 2 for all 𝑖 ∈ [𝑛], this suffices to show 𝐴𝑥0 < ®1.

Elementary calculations show that 𝑥0 − 𝑒𝑛/4 satisfies 𝑒𝑛T (𝑥0 − 𝑒𝑛/4) = 0 and,
for every 𝑖 ∈ [𝑛 − 1], (𝑙𝑒𝑖 + 𝑔𝑖)T (𝑥0 − 𝑒𝑛/4) = −𝑔𝑖T𝑒𝑛/4. Let 𝐺 be the matrix with
rows consisting of the first 𝑛 − 1 entries of each of 𝑔1, . . . , 𝑔𝑛−1, and 𝑔 be the vector
consisting of the 𝑛th entries of 𝑔1, . . . , 𝑔𝑛−1. From the above equalites we derive(

𝑙 𝐼𝑛−1 + 𝐺 𝑔
0T 1

)
(𝑥0 − 𝑒𝑛/4) =

1
4

(
−𝑔
0

)
(
𝑙 𝐼𝑛−1 + 𝐺 0

0T 1

)
(𝑥0 − 𝑒𝑛/4) =

1
4

(
−𝑔
0

)
𝑥0 − 𝑒𝑛/4 =

1
4

(
−

(
𝑙 𝐼𝑛−1 + 𝐺

)−1
𝑔

0

)
.

Note that the matrix is almost surely invertible. We abbreviate 𝑀 = 𝑙 𝐼𝑛−1 + 𝐺 and
bound ‖𝑥0 − 𝑒𝑛/4‖ ≤ ‖𝑀−1‖‖𝑔‖/4. Using that 𝜎 ≤ 𝑙

6
√
𝑛
, we apply (2.7) to get

‖𝑔‖ ≤ 𝑙/2 with probability at least 0.99.
The operator norm of the inverse matrix satisfies ‖𝑀−1‖ = 1

𝑠min (𝑙𝐼+𝐺) , and by the
triangle inequality we derive

𝑠min(𝑙 𝐼 + 𝐺) ≥ 𝑠min(𝑙 𝐼) − 𝑠max(𝐺) = 𝑙 − 𝑠max(𝐺).

By Lemma 2.5.8, we have ‖𝐺‖ ≤ 3
√
𝑛𝜎 ≤ 𝑙/2 with probability at least 0.99. Putting

the pieces together, we conclude that

1
4
‖𝑀−1‖‖𝑔‖ ≤ 1

4
· 1
𝑙 − 𝑙/2 ·

𝑙

2
≤ 1/4.

We take the union bound over the two bad events and thus conclude that 𝑎𝑖T𝑥0 ≤
‖𝑎𝑖 ‖‖𝑥0‖ < 1 for all 𝑖 ∈ [𝑚] with probability at least 0.98. □

Lastly, we need to prove that the conditionals on lines 10, 12 and 13 of Algorithm 2
succeeds with sufficient probability.

Lemma 2.5.10 (Adapted from [200]). Let 𝑙 ≤ 1/6
√

log 𝑛 and 𝜎 ≤ 1/8
√
𝑛 log 𝑛. For

fixed 𝐴 and 𝑉 sampled as in lines 4-7 of Algorithm 2, let 𝑥∗ be the optimal solution
to (Unit LP’) if it exists. With probability at least 0.24, (Unit LP) being unbounded
implies that (Unit LP’) is unbounded and (Unit LP) being bounded implies 𝑉𝑥∗ < ®1.

Proof. Let 𝑥 be the maximizer of (Unit LP) if it exists, or otherwise a generator for
an unbounded ray in (Unit LP), and let 𝜔 = 𝑥/‖𝑥‖. We aim to prove that𝑉𝜔 < ®0 with
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probability at least 0.24 over the randomness in 𝑉 , which is sufficient for the lemma
to hold.

We fix 𝐴, and hence 𝜔 as well. We decompose

𝑣+𝑖
T𝜔 = 4𝑑T𝜔 + (𝑙𝑅𝑒𝑖)T𝜔 + (𝑅𝑔𝑖)T𝜔, (2.43)

for all 𝑖 ∈ [𝑛−1] and similarly for 𝑣−𝑖 , and we will bound the different terms separately.
The inner product 𝑑T𝜔 has probability density proportional to

√
1 − 𝑡2

𝑛−3
, as

it is the one-dimensional marginal distribution over the sphere S𝑛−1 (see e.g., [80],
equation 1.26). which can differ over the interval [−

√
2
𝑛−1 ,

√
2
𝑛−1 ] by at most a factor

1/𝑒. We lower bound the probability that 𝑑T𝜔 is far from being positive:

Pr[𝑑T𝜔 < −1
4

√
2

𝑛 − 1
] = 1

2
Pr[𝑑T𝜔 < −1

4

√
2

𝑛 − 1
| 𝑑T𝜔 ≤ 0]

≥ 1
2

Pr[𝑑T𝜔 < −1
4

√
2

𝑛 − 1
| 𝑑T𝜔 ∈ [−

√
2

𝑛 − 1
, 0]]

≥ 1
2
·

3
4𝑒

3
4𝑒 +

1
4

≥ 0.26.

Hence, for 𝑑 a randomly chosen unit vector independent of𝜔, we have 4𝑑T𝜔 < −
√

2
𝑛−1

with probability at least 0.26. Now we will give an upper bound on the second and
third terms in (2.43) with sufficient probability.

By the same measure concentration argument as in the proof of (2.11) we know
that Pr[| (𝑒𝑖)T𝑅T𝜔 | > 𝑡/

√
𝑛 − 1] ≤ 𝑒−𝑡

2/2. We apply the above statement with
𝑡 = 3

√
log 𝑛 and find that

| (𝑙𝑒𝑖)T𝑅T𝜔 | < 𝑡𝑙/
√
𝑛 − 1 ≤ 1/2

√
𝑛 − 1

with probability at least 1 − 0.01
𝑛 .

For the last part, fix 𝑅 = 𝐼 without loss of generality. The inner product 𝑔𝑖T𝜔 is
𝑁 (0, 𝜎2) distributed, hence Pr[|𝑔𝑖T𝜔| < 4𝜎

√
log 𝑛] ≥ 1− 0.01

𝑛 by standard Gaussian
tail bounds. Recall that 4𝜎

√
log 𝑛 ≤ 1/2

√
𝑛 − 1.

Putting it all together, we take the union bound over the three terms in (2.43) and
all 𝑣+𝑖 , 𝑣

−
𝑖 with 𝑖 ∈ [𝑛 − 1] and find that 𝑣+𝑖

T𝜔 < 0 and 𝑣−𝑖
T𝜔 < 0 for all 𝑖 ∈ [𝑛 − 1]

with probability at least 0.26 − (𝑛 − 1) 0.01
𝑛 − (𝑛 − 1) 0.01

𝑛 ≥ 0.24. □

Theorem 2.5.11. For 𝜎 ≤ �̄�, Algorithm 2 solves (Unit LP) in at most an expected
6 + 5D𝑔 (𝑛, 𝑚 + 2𝑛 − 2, 𝜎/5) number of shadow vertex pivots.
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Proof. Let 𝑎1, . . . , 𝑎𝑚 ∈ R𝑛 denote the rows of 𝐴, where we recall that the centers
�̄�𝑖 := E[𝑎𝑖], 𝑖 ∈ [𝑚], have norm at most 1. We let 𝐿 denote the event that the rows
of 𝑎1, . . . , 𝑎𝑚 all have norm at most 2, and 𝐿𝑐 denotes the complement of 𝐿.

Pivots from line 1 Noting that each 𝑎𝑖 , 𝑖 ∈ [𝑚], is a variance 𝜎2 Gaussian and
1/𝜎 ≥ 5

√
𝑛 log𝑚, by Lemma 2.2.2 (Gaussian concentration), we have that

Pr[𝐿𝑐] = Pr[∃𝑖 ∈ [𝑚] : ‖𝑎𝑖 ‖ ≥ 2] ≤ 𝑚 Pr[‖𝑎1 − �̄�1‖ ≥ 1]

≤ 𝑚 Pr[‖𝑎1 − �̄�1‖ ≥ 5
√
𝑛 log𝑚𝜎] ≤ 𝑒−(𝑛/2) (5

√
log𝑚−1)2 ≤ 𝑚−𝑛 .

Therefore, the simplex run on line 1 is executed with probability at most𝑚−𝑛 incurring
at most 𝑚−𝑛

(𝑚
𝑛

)
≤ 1 pivots on expectation.

Pivots from the main loop Let𝑉1, 𝑉2, . . . be independent samples of𝑉 as described
in lines 3-7 of Algorithm 2. Define the random variable 𝑁 = 𝑁 (𝐴,𝑉𝑖 : 𝑖 ∈ N) ≥ 0 as
the number of iterations of the main loop if Algorithm 2 were run on input 𝐴, 𝑐 and
the value of 𝑉 in iteration 𝑖 equals 𝑉𝑖 . Note that 𝑁 = 0 exactly if 𝐿𝑐 . Note that the
value of 𝑉𝑖 unique specifies the value of 𝑑𝑖 . Define the event 𝐹𝑖 that the checks on
lines 9 and 10 would pass on data 𝑉𝑖 . Lastly, let 𝐶 (𝐴,𝑉𝑖) denote the number of pivot
steps that an iteration of the main loop would perform on the data 𝐴,𝑉𝑖 . In particular,
𝐶 (𝐴,𝑉𝑖) > 0 exactly when 𝐿 and 𝐹𝑖 .

The total number of pivot steps is given by the expectation

E[
𝑁∑
𝑘=1

𝐶 (𝐴,𝑉𝑘)] = E[
∞∑
𝑘=1

𝐶 (𝐴,𝑉𝑘)1[𝑁 ≥ 𝑘]]

=
∞∑
𝑘=1

E[𝐶 (𝐴,𝑉𝑘)1[𝑁 ≥ 𝑘]] .

For any 𝑘 , the event 𝑁 ≥ 𝑘 depends solely on 𝑉1, . . . , 𝑉𝑘−1, hence we get

∞∑
𝑘=1

E[𝐶 (𝐴,𝑉𝑘)1[𝑁 ≥ 𝑘]] =
∞∑
𝑘=1

E𝐴,𝑉𝑘 [𝐶 (𝐴,𝑉𝑘)E𝑉1,...,𝑉𝑘−1 [1[𝑁 ≥ 𝑘 | 𝐴]]

=
∞∑
𝑘=1

E[𝐶 (𝐴,𝑉𝑘) Pr[𝑁 ≥ 𝑘 | 𝐴]]

=
∞∑
𝑘=1

E[𝐶 (𝐴,𝑉𝑘) Pr[𝑁 > 1 | 𝐴]𝑘−1],

where the last line follows from the observation that the separate trials are independent
when 𝐴 is fixed. When 𝐴 is such that 𝐿𝑐 holds, then Pr[𝑁 > 1 | 𝐴] = 0. Now we
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appeal to Lemma 2.5.9 and Lemma 2.5.10. The first shows that the Algorithm 2
does not restart on line 9 with probability at least 0.98 and the second shows that the
algorithm does not restart on lines 10 and 14 with probability at least 0.24. By the
union bound, this implies that Pr[𝑁 > 1|𝐴] ≤ 1 − 0.22 for any 𝐴 such that 𝐿 holds.
Hence we get

∞∑
𝑘=1

E𝐴,𝑉𝑘 [𝐶 (𝐴,𝑉𝑘) Pr[𝑁 > 1 | 𝐴]𝑘−1] ≤
∞∑
𝑘=1

E[𝐶 (𝐴,𝑉𝑘)(1 − 0.22)𝑘−1]

=
1

0.22
E[𝐶 (𝐴,𝑉1)] .

The number of pivot steps 𝐶 (𝐴,𝑉1) is nonzero exactly when 𝐿 and 𝐹1 hold, and is
always bounded by the shadow size according to Theorem 2.2.11. We bound this
quantity using Lemma 2.5.6 and get

1
0.22

E[𝐶 (𝐴,𝑉1)] ≤ 5E[1𝐹1 ∩ 𝐿 |edges(conv(𝐴,𝑉1) ∩ span(𝑐, 𝑑1)) |]

≤ 5E[|edges(conv(𝐴,𝑉1) ∩ span(𝑐, 𝑑1)) |]
≤ 5D𝑔 (𝑛, 𝑚 + 2𝑛 − 2,min(𝜎, �̄�)/5) + 5.

Final Bound Combining the results from the above paragraphs, we get that the total
expected number of simplex pivots in Algorithm 2 is bounded by:

Pr[𝐿𝑐]
(
𝑚

𝑛

)
+ E[

𝑁∑
𝑘=1

𝐶 (𝐴,𝑉𝑘)] ≤ 6 + 5D𝑔 (𝑛, 𝑚 + 2𝑛 − 2, 𝜎/5) ,

as needed. □

This finishes up the analysis of the symmetric RV algorithm.

Theorem 2.5.12. (Smoothed LP) can be solved by a two-phase shadow simplex
method using an expected number of pivots of 𝑂 (𝑛2√log𝑚 𝜎−2 + 𝑛3 log(𝑚)1.5).

Proof. Combining Lemma 2.5.1 and Theorem 2.5.11, the expected number of simplex
pivots is bounded by

10 +D𝑔 (𝑛 + 1, 𝑚, 𝜎/2) + 5D𝑔 (𝑛, 𝑚 + 2𝑛 − 2,min{𝜎, �̄�}/5) ,

where �̄� is as defined in (2.41). Noting that 1/�̄� = 𝑂 (
√
𝑛 log𝑚), by the smoothed

Gaussian shadow bound (Theorem 2.4.1), the above is bounded by

𝑂 (D𝑔 (𝑛, 𝑚, 𝜎) +D𝑔 (𝑛, 𝑚, (
√
𝑛 log𝑚)−1)) = 𝑂 (𝑛2√log𝑚𝜎−2 + 𝑛3 log(𝑚)1.5) ,

as needed. □



Chapter 3

Asymptotic Bounds on the Combinatorial Diameter of
Random Polytopes

The combinatorial diameter diam(𝑃) of a polytope 𝑃 is the maximum shortest path
distance between any pair of vertices. In this chapter, we provide upper and lower
bounds on the combinatorial diameter of a random “spherical” polytope, which is
tight to within one factor of dimension when the number of inequalities is large
compared to the dimension. More precisely, for an 𝑛-dimensional polytope 𝑃 defined
by the intersection of 𝑚 i.i.d. half-spaces whose normals are chosen uniformly from
the sphere, we show that diam(𝑃) is Ω(𝑛𝑚 1

𝑛−1 ) and 𝑂 (𝑛2𝑚
1

𝑛−1 + 𝑛54𝑛) with high
probability when 𝑚 ≥ 2Ω(𝑛) .

For the upper bound, we first prove that the number of vertices in any fixed two-
dimensional projection sharply concentrates around its expectation when 𝑚 is large,
where we rely on the Θ(𝑛2𝑚

1
𝑛−1 ) bound on the expectation due to Borgwardt [29].

To obtain the diameter upper bound, we stitch these “shadows paths” together over
a suitable net using worst-case diameter bounds to connect vertices to the nearest
shadow. For the lower bound, we first reduce to lower bounding the diameter of the
dual polytope 𝑃◦, corresponding to a random convex hull, by showing the relation
diam(𝑃) ≥ (𝑛 − 1) (diam(𝑃◦) − 2). We then prove that the shortest path between any
“nearly” antipodal pair vertices of 𝑃◦ has length Ω(𝑚 1

𝑛−1 ).

3.1 Introduction

When does a polyhedron have small (combinatorial) diameter? This question has
fascinated mathematicians, operation researchers and computer scientists for more
than half a century. In a letter to Dantzig in 1957, motivated by the study of the
simplex method for linear programming, Hirsch conjectured that any 𝑛-dimensional
polytope with 𝑚 facets has diameter at most 𝑚 − 𝑛. While recently disproved by
Santos [167] (for unbounded polyhedra, counter-examples were already given by

This chapter is based on [25], a joint work with Gilles Bonnet, Daniel Dadush, Uri Grupel and
Galyna Livshyts.
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Klee and Walkup [126]), the question of whether the diameter is bounded from above
by a polynomial in 𝑛 and 𝑚, known as the polynomial Hirsch conjecture, remains
wide open. In fact, the current counter-examples violate the conjectured 𝑚 − 𝑛 bound
by at most 25 percent.

The best known general upper bounds on the combinatorial diameter of polyhedra
are the 2𝑛−3𝑚 bound by Barnette and Larman [14, 15, 130], which is exponential in
𝑛 and linear in 𝑚, and the quasi-polynomial 𝑚log2 𝑛+1 bound by Kalai and Kleitman
[118]. The Kalai-Kleitman bound was recently improved to (𝑚−𝑛)log2 𝑛 by Todd [186]
and (𝑚 − 𝑛)log2𝑂 (𝑛/log 𝑛) by Sukegawa [181]. Similar diameter bounds have been
established for graphs induced by certain classes of simplicial complexes, which vastly
generalize 1-skeleta of polyhedra. In particular, Eisenbrand et al. [77] proved both
Barnette-Larman and Kalai-Kleitman bounds for so-called connected-layer families
(see Theorem 3.3.15), and Labbé et al. [128] extended the Barnette-Larman bound to
pure, normal, pseudo-manifolds without boundary.

Moving beyond the worst-case bounds, one may ask for which families of poly-
hedra does the Hirsch conjecture hold, or more optimistically, are there families for
which we can significantly beat the Hirsch conjecture? Many interesting classes
induced by combinatorial optimization problems are known to satisfy the Hirsch
conjecture, including the class of polytopes with vertices in {0, 1}𝑛 [150], Leontief
substitution systems [102], transportation polyhedra and their duals [11, 32, 34], as
well as the fractional stable-set and perfect matching polytopes [144,165].

Relatedly, there has been progress on obtaining diameter bounds for classes of
“well-conditioned” polyhedra. If 𝑃 is a polytope defined by an integral constraint
matrix 𝐴 ∈ Z𝑚×𝑛 with all square submatrices having determinant of absolute value
at most Δ, then diameter bounds polynomial in 𝑚, 𝑛 and Δ have been obtained [23,47,
75,151]. The best current bound is 𝑂 (𝑛3Δ2 log(Δ)), due to Dadush and Hähnle [47].
Extending on the result of Naddef [150], strong diameter bounds have been proved
for polytopes with vertices in {0, 1, . . . , 𝑘}𝑛 [64,69,127]. In particular, [127] proved
that the diameter is at most 𝑛𝑘 , which was improved to 𝑛𝑘 − d𝑛/2e for 𝑘 ≥ 2 [64] and
to 𝑛𝑘 − d2𝑛/3e − (𝑘 − 2) for 𝑘 ≥ 4 [69].

3.1.1 Diameter of Random Polytopes

With a view of beating the Hirsch bound, the main focus of this chapter will be to
analyze the diameter of random polytopes, which one may think of as well-conditioned
on “average”. Coming both from the average case and smoothed analysis literature
that was mentioned in Chapter 2, there is tantilizing evidence that important classes
of random polytopes may have very small diameters.

In the average-case context, Borgwardt [28,29] proved that for 𝑃(𝐴) := {𝑥 ∈ R𝑛 :
𝐴𝑥 ≤ ®1}, 𝐴 ∈ R𝑚×𝑛 where the rows of 𝐴 are drawn from any rotational symmetric
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distribution (RSD), that the expected number of edges in any fixed two-dimensional
projection of 𝑃(𝐴) – the so-called shadow bound – is 𝑂 (𝑛2𝑚

1
𝑛−1 ). Borgwardt also

showed that this bound is tight up to constant factors when the rows of 𝐴 are drawn
uniformly from the sphere, that is, the expected shadow size is Θ(𝑛2𝑚

1
𝑛−1 ). In the

smoothed analysis context, 𝐴 has the form �̄� + 𝜎𝐺, where �̄� is a fixed matrix with
rows of ℓ2 norm at most 1 and 𝐺 has i.i.d. standard normally distributed entries and
𝜎 > 0. Bounds on the expected size of the shadow in this context were first studied by
Spielman and Teng [179], later improved by [50, 200], where the best current bound
is 𝑂 (𝑛2√log𝑚/𝜎2) when 𝜎 ≤ 1√

𝑛 log𝑚
, as seen in Chapter 2.

From the perspective of short paths, these results imply that if one samples
objectives 𝑣, 𝑤 uniformly from the sphere, then there is a path between the vertices
maximizing 𝑣 and 𝑤 in 𝑃(𝐴) of expected length 𝑂 (𝑛2𝑚

1
𝑛−1 ) in the RSD model, and

expected length 𝑂 (𝑛2√log𝑚/𝜎2) in the smoothed model. That is, “most pairs” of
vertices (with respect to the distribution in the last sentence), are linked by short
expected length paths. Note that both of these bounds scale either sublinearly or
logarithmically in 𝑚, which is far better than 𝑚 − 𝑛. While these bounds provide
evidence, they do not directly upper bound the diameter, since this would need to
work for all pairs of vertices rather than most pairs.

A natural question is thus whether the shadow bound is close to the true diameter.
In this chapter, we show that this is indeed the case, in the setting where the rows of 𝐴
are drawn uniformly from the sphere and when 𝑚 is (exponentially) large compared
to 𝑛. More formally, our main result is as follows:

Theorem 3.1.1. Suppose that 𝑛, 𝑚 ∈ N satisfy 𝑛 ≥ 2 and 𝑚 ≥ 2Ω(𝑛) . Let
𝐴T := (𝑎1, . . . , 𝑎𝑀 ) ∈ R𝑛×𝑀 , where 𝑀 is Poisson distributed with E[𝑀] = 𝑚,
and 𝑎1, . . . , 𝑎𝑀 are sampled independently and uniformly from S𝑛−1. Then, letting
𝑃(𝐴) := {𝑥 ∈ R𝑛 : 𝐴𝑥 ≤ ®1}, with probability at least 1 − 𝑚−𝑛, we have that

Ω(𝑛𝑚 1
𝑛−1 ) ≤ diam(𝑃(𝐴)) ≤ 𝑂 (𝑛2𝑚

1
𝑛−1 + 𝑛54𝑛).

In the above, we note that the number of constraints 𝑀 is chosen according to
a Poisson distribution with expectation 𝑚. This is only for technical convenience
(it ensures useful independence properties, see Proposition 3.2.5), and with small
modifications, our arguments also work in the case where 𝑀 := 𝑚 deterministically.
Also, since the constraints are chosen from the sphere, 𝑀 is almost surely equal to
the number of facets of 𝑃(𝐴) above (i.e., there are no redundant inequalities).

From the bounds, we see that diam(𝑃(𝐴)) ≤ 𝑂 (𝑛2𝑚
1

𝑛−1 ) with high probability
as long as 𝑚 ≥ 2Ω(𝑛2) . This shows that the shadow bound is indeed close to an
upper bound for the expected diameter when 𝑚 is sufficiently large. Furthermore, the
shadow bound is tight to within one factor of dimension in this regime.
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Figure 3.1: A shortest path between a diameter-achieving pair of vertices, on a random
spherical polytope with 100 constraints.

We note that the upper bound is already non-trivial when 𝑚 ≥ Ω(𝑛54𝑛), since then
𝑂 (𝑛2𝑚

1
𝑛−1 + 𝑛54𝑛) ≤ 𝑚 − 𝑛.

While our bounds are only interesting when 𝑚 is exponential, the bounds are
nearly tight asymptotically, and as far as we are aware, they represent the first non-
trivial improvements over worst-case upper bounds for a natural class of polytopes
defined by random halfspaces.

Our work naturally leaves two interesting open problems. The first is whether the
shadow bound upper bounds the diameter when 𝑚 is polynomial in 𝑛. The second is
to close the factor 𝑛 gap between upper and lower bound in the large 𝑚 regime.

3.1.2 Prior work

Lower bounds on the diameter of 𝑃(𝐴), 𝐴T = (𝑎1, . . . , 𝑎𝑚) ∈ R𝑛×𝑚, were studied by
Borgwardt and Huhn [31]. They examined the case where each row of 𝐴 is sampled
from a RSD with radial distribution

Pr
𝑎
[‖𝑎‖2 ≤ 𝑟] =

∫ 𝑟
0 (1 − 𝑡

2)𝛽𝑡𝑛−1𝑑𝑡∫ 1
0 (1 − 𝑡2)𝛽𝑡𝑛−1𝑑𝑡

,

for 𝑟 ∈ [0, 1], 𝛽 ∈ (−1,∞). Restricting their results to the case 𝛽→ −1, correspond-
ing to the uniform distribution on the sphere (where the bound is easier to state), they
show that

E[diam(𝑃(𝐴))] ≥ Ω(𝑚
1
𝑛+

1
𝑛(𝑛−1)2 ).
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We improve their lower bound to Ω(𝑛𝑚1/(𝑛−1) ) when 𝑚 ≥ 2Ω(𝑛) , noting that
𝑚1/(𝑛−1) = 𝑂 (1) for 𝑚 = 2𝑂 (𝑛) .

In terms of upper bounds, the diameter of a random convex hull of points, instead
of a random intersection of halfspaces, has been implicitly studied. Given a matrix
𝐴T = (𝑎1, . . . , 𝑎𝑚) ∈ R𝑛×𝑚, let us define

𝑄(𝐴) := conv({𝑎1, . . . , 𝑎𝑚}) (3.1)

to be the convex hull of the rows of 𝐴. When the rows of 𝐴 are sampled uniformly
from the unit ball B𝑛2 , the question of when the diameter of 𝑄(𝐴) is exactly 1 (i.e.,
every pair of distinct vertices is connected by an edge) was studied by Bárány and
Füredi [13]. They proved that with probability approaching 1, diam(𝑄(𝐴)) = 1 if
𝑚 ≤ 1.125𝑛 and diam(𝑄(𝐴)) > 1 if 𝑚 ≥ 1.4𝑛.

In dimension 3, letting 𝑎1, . . . , 𝑎𝑀 ∈ S2 be chosen independently and uniformly
from the 2-sphere, where 𝑀 is Poisson distributed with E[𝑀] = 𝑚, Glisse, Lazard,
Michel and Pouget [89] proved that with high probability the maximum number of
edges in any two-dimensional projection of𝑄(𝐴) isΘ(√𝑚). This in particular proves
that the combinatorial diameter is at most 𝑂 (√𝑚) with high probability.

It is important to note that the geometry of 𝑃(𝐴) and 𝑄(𝐴) are strongly related.
Indeed, as long as 𝑚 = Ω(𝑛) and the rows of 𝐴 are drawn from a symmetric
distribution, 𝑃(𝐴) and 𝑄(𝐴) are polars of each other. To be precise, it always holds
that

𝑄(𝐴)◦ := {𝑥 ∈ R𝑛 : 〈𝑥, 𝑦〉 ≤ 1,∀𝑦 ∈ 𝑄(𝐴)} = 𝑃(𝐴)

and if ®0 ∈ 𝑄(𝐴) then also

𝑃(𝐴)◦ := {𝑥 ∈ R𝑛 : 〈𝑥, 𝑦〉 ≤ 1,∀𝑦 ∈ 𝑃(𝐴)} = 𝑄(𝐴)

As a direct consequence of Wendel’s theorem [169, Theorem 8.2.1], ®0 ∈ 𝑄(𝐴)
happens with probability approaching 1 when 𝑚 ≥ 𝑐𝑛 for any fixed 𝑐 > 2. In general
𝑃(𝐴)◦ = conv(𝐴 ∪ {®0}) holds.

As we will see, our proof of Theorem 3.1.1 will in fact imply similarly tight
diameter bounds for diam(𝑄(𝐴)) as for diam(𝑃(𝐴)), yielding analogues and general-
izations of the above results, when 𝐴T = (𝑎1, . . . , 𝑎𝑀 ) ∈ R𝑛×𝑀 and𝑀 is Poisson with
E[𝑀] = 𝑚. More precisely, we will show that for 𝑚 ≥ 2Ω(𝑛) , with high probability

Ω(𝑚 1
𝑛−1 ) ≤ diam(𝑄(𝐴)) ≤ 𝑂 (𝑛𝑚 1

𝑛−1 + 𝑛54𝑛).

In essence, for 𝑚 large enough, our bounds for diam(𝑄(𝐴)) are a factor Θ(𝑛) smaller
than our bounds for diam(𝑃(𝐴)). This relation will be explained in Section 3.4.
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3.1.3 Proof Overview

In this section, we give the high level overview of our approach for both the upper
and lower bound in Theorem 3.1.1.

The Upper Bound

In this overview, we will say that an event holds with high probability if it holds
with probability 1 − 𝑚−Ω(𝑛) . To prove the upper bound on the diameter of 𝑃(𝐴), we
proceed as follows. For simplicity, we will only describe the high level strategy for
achieving a 𝑂 (𝑛2𝑚

1
𝑛−1 + 2𝑂 (𝑛) ) bound. To begin, we first show that the vertices of

𝑃(𝐴) maximizing objectives in a suitable net 𝑁 of the sphere S𝑛−1, are all connected
to the vertex maximizing 𝑒1, with a path of length 𝑂 (𝑛2𝑚

1
𝑛−1 + 2𝑂 (𝑛) ) with high

probability. Second, we will show that with high probability, for all 𝑣 ∈ S𝑛−1, there
is a path between the vertex of 𝑃(𝐴) maximizing 𝑣 and the corresponding maximizer
of closest objective 𝑣′ ∈ 𝑁 of length at most 2𝑂 (𝑛) log𝑚. Since every vertex of 𝑃(𝐴)
maximizes some objective in S𝑛−1, by stitching at most 4 paths together, we get that
the diameter of 𝑃(𝐴) is at most 𝑂 (𝑛2𝑚

1
𝑛−1 + 2𝑂 (𝑛) log𝑚) = 𝑂 (𝑛2𝑚

1
𝑛−1 + 2𝑂 (𝑛) ) with

high probability.
We only explain the strategy for the first part, as the second part follows easily

from the same techniques. The key estimate here is the sharp Θ(𝑛2𝑚
1

𝑛−1 ) bound
on the expected number of vertices in a fixed two-dimensional projection due to
Borgwardt [28, 29], the so-called shadow bound, which allows one to bound the
expected length of paths between vertices maximizing any two fixed objectives (see
Section 3.3 for a more detailed discussion). We first strengthen this result by proving
that the size of the shadow sharply concentrates around its expectation when𝑚 is large
(Theorem 3.3.4), allowing us to apply a union bound on a suitable net of shadows,
each corresponding to a two-dimensional plane spanned by 𝑒1 and some element of 𝑁
above. To obtain such concentration, we show that the shadow decomposes into a sum
of nearly independent “local shadows”, corresponding to the vertices maximizing a
small slice of the objectives in the plane, allowing us to apply concentration results
on sums of nearly independent random variables.

Independence via Density We now explain the local independence structure in
more detail. For this purpose, we examine the smallest 𝜀 > 0 such that rows of 𝐴
are 𝜀-dense on S𝑛−1, that is, such that every point in S𝑛−1 is at distance at most 𝜀
from some row of 𝐴. Using standard estimates on the measure of spherical caps and
the union bound, one can show with high probability that 𝜀 := Θ((log𝑚/𝑚)1/𝑚) and
that any spherical cap of radius 𝑡𝜀 contains at most 𝑂 (𝑡𝑛−1 log𝑚) rows of 𝐴 for any
fixed 𝑡 ≥ 1 (see Lemma 3.2.3 and Corollary 3.2.7).
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We derive local independence from the fact that the vertex 𝑣 of 𝑃(𝐴) maximizing
a unit norm objective 𝑤 is defined by constraints 𝑎 ∈ 𝐴 which are distance at most
2𝜀 from 𝑤 (see Lemma 3.3.10 for a more general statement). This locality implies
that the number of vertices in a projection of 𝑃(𝐴) onto a two-dimensional subspace
𝑊 3 𝑤 maximizing objectives at distance 𝜀 from 𝑤 (i.e., the slice of objectives)
depends only on the constraints in 𝐴 at distance at most 𝑂 (𝜀) from 𝑤. In particular,
the number of relevant constraints for all objectives at distance 𝜀 from 𝑤 is at most
2𝑂 (𝑛) log𝑚 by the estimate in the last paragraph. By the independence properties of
Poisson processes (see Proposition 3.2.5), one can in fact conclude that this local part
of the shadow on𝑊 is independent of the constraints in 𝐴 at distance more than𝑂 (𝜀)
from 𝑤.

Given the above, we decompose the shadow onto 𝑊 into 𝑘 = 𝑂 (1/𝜀) pieces,
by placing 𝑘 equally spaced objectives 𝑤0, . . . , 𝑤𝑘−1, 𝑤𝑘 = 𝑤0 on S𝑛−1 ∩ 𝑊 , so
that ‖𝑤𝑖 − 𝑤𝑖+1‖2 ≤ 𝜀, 0 ≤ 𝑖 ≤ 𝑘 − 1, and defining 𝐾𝑖 ≥ 0, 0 ≤ 𝑖 ≤ 𝑘 − 1, to
be the number of vertices maximizing objectives in [𝑤𝑖 , 𝑤𝑖+1]. This subdivision
partitions the set of shadow vertices, so Borgwardt’s bound applies to the expected
sum: E[∑𝑘−1

𝑖=0 𝐾𝑖] = 𝑂 (𝑛2𝑚1/(𝑛−1) ). Furthermore, as argued above, each 𝐾𝑖 is
(essentially) independent of all 𝐾 𝑗’s with |𝑖 − 𝑗 mod 𝑘 | = Ω(1). This allows us to
apply a Bernstein-type concentration bound for sums of nearly-independent bounded
random variables to ∑𝑘−1

𝑖=0 𝐾𝑖 (see Lemma 3.2.8).
Unfortunately, the worst-case upper bounds we have for each 𝐾𝑖 , 0 ≤ 𝑖 ≤ 𝑘 − 1,

are rather weak. Namely, we only know that in the worst-case, 𝐾𝑖 is bounded by
the total number of vertices induced by constraints relevant to the interval [𝑤𝑖 , 𝑤𝑖+1],
where ‖𝑤𝑖 − 𝑤𝑖+1‖ ≤ 𝜀. As mentioned above, the number of relevant constraints
is 2𝑂 (𝑛) log𝑚 and hence the number of vertices is at most (2𝑂 (𝑛) log𝑚)𝑛. With
these estimates, we can show high probability concentration of the shadow size
around its mean when 𝑚 ≥ 2Ω(𝑛3) . One important technical aspect ignored above
is that both the independence properties and the worst-case upper bounds on each
𝐾𝑖 crucially relies only on conditioning 𝐴 to be “locally” 𝜀-dense around [𝑤𝑖 , 𝑤𝑖+1]
(see Definition 3.3.11 and Lemma 3.3.14 for more details).

Abstract Diameter Bounds to the Rescue To allow tight concentration of the
diameter to occur for 𝑚 = 2Ω(𝑛2) , we adapt the above strategy by successively
following shortest paths instead of the shadow path on 𝑊 . More precisely, between
the maximizer 𝑣𝑖 of 𝑤𝑖 and 𝑣𝑖+1 of 𝑤𝑖+1, 0 ≤ 𝑖 ≤ 𝑘 − 1, we follow the shortest
path from 𝑣𝑖 to 𝑣𝑖+1 in the subgraph induced by the vertices 𝑣 of 𝑃(𝐴) satisfying
〈𝑣, 𝑤𝑖+1〉 ≥ 〈𝑣𝑖 , 𝑤𝑖+1〉. We now let 𝐾𝑖 , 0 ≤ 𝑖 ≤ 𝑘 − 1, denote the length of the
corresponding shortest path. For such local paths, one can apply the abstract Barnette–
Larman style bound of [77] to obtain much better worst-case bounds. Namely, we can
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show 𝐾𝑖 ≤ 2𝑂 (𝑛) log𝑚, 0 ≤ 𝑖 ≤ 𝑘 − 1, instead of (2𝑂 (𝑛) log𝑚)𝑛 (see Lemma 3.3.16).
Crucially, the exact same independence and locality properties hold for these paths as
for the shadow paths, due to the generality of our main locality lemma (Lemma 3.3.10).
Furthermore, as these paths are only shorter than the corresponding shadow paths,
their expected sum is again upper bounded by Borgwardt’s bound. With the improved
worst-case bounds, our concentration estimates are sufficient to show that all paths
indexed by planes in the net 𝑁 have length 𝑂 (𝑛2𝑚

1
𝑛−1 + 2𝑂 (𝑛) ) with high probability.

The Lower Bound

For the lower bound, we first reduce to lower bounding the diameter of the polar
polytope 𝑃(𝐴)◦ = 𝑄(𝐴), where we show that diam(𝑃(𝐴)) ≥ (𝑛−1)(diam(𝑄(𝐴))−2)
(see Lemma 3.4.1). This relation holds as long as 𝑃(𝐴) is a simple polytope containing
the origin in its interior (which holds with probability 1 − 2−Ω(𝑚) ). To prove it, we
show that given any path between vertices 𝑣1, 𝑣2 of 𝑃(𝐴) of length 𝐷, respectively
incident to distinct facets 𝐹1, 𝐹2 of 𝑃(𝐴), one can extract a facet path, where adjacent
facets share an (𝑛 − 2)-dimensional intersection (i.e., a ridge), of length at most
𝐷/(𝑛−1) +2. Such facet paths exactly correspond to paths between vertices in𝑄(𝐴),
yielding the desired lower bound.

For 𝑚 ≥ 2Ω(𝑛) , proving that diam(𝑃(𝐴)) ≥ Ω(𝑛𝑚1/(𝑛−1) ) reduces to showing
that diam(𝑄(𝐴)) ≥ 𝑚1/(𝑛−1) with high probability. For the 𝑄(𝐴) lower bound,
we examine the length of paths between vertices of 𝑄(𝐴) maximizing antipodal
objectives, e.g., −𝑒1 and 𝑒1. From here, one can easily derive an Ω((𝑚/log𝑚) 1

𝑛−1 )
lower bound on the length of such a path, by showing that every edge of 𝑄(𝐴) has
length 𝜀 := Θ((log𝑚/𝑚) 1

𝑛−1 ) and that the vertices in consideration are at distance
Ω(1). This is a straightforward consequence of 𝑄(𝐴) being tightly sandwiched by
Euclidean balls, namely (1 − 𝜀2/2)B𝑛2 ⊆ 𝑄(𝐴) ⊆ B𝑛2 (Lemma 3.3.6) with high
probability. This sandwiching property is itself a consequence of the rows of 𝐴 being
𝜀-dense on S𝑛−1, as mentioned in the previous section.

Removing the extraneous logarithmic factor (which makes the multiplicative gap
between our lower and upper bound go to infinity as 𝑚 →∞), requires a much more
involved argument as we cannot rely on a worst-case upper bound on the length of
edges. Instead, we first associate any antipodal path above to a continuous curve on
the sphere from −𝑒1 to 𝑒1 (Lemma 3.4.6), corresponding to objectives maximized
by vertices along the path. From here, we decompose any such curve into Ω(𝑚 1

𝑛−1 )
segments whose endpoints are at distance Θ(𝑚−1/(𝑛−1) ) on the sphere. Finally,
by appropriately bucketing the breakpoints (Lemma 3.4.7) and applying a careful
union bound, we show that for any such curve, an Ω(1) fraction of the segments
induce at least 1 edge on the corresponding path with overwhelming probability
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(Theorem 3.4.2). For further details on the lower bound, including how we discretize
the set of curves, we refer the reader to Section 3.4.

3.1.4 Organization

In Section 3.2, we introduce some basic notation as well as background materials on
Poisson processes, the measure of spherical caps, and concentration inequalities for
independent random variables. In Section 3.3, we prove the upper bound. Halfway
into that section, we also prove Theorem 3.3.4, a tail bound on the shadow size that
is of independent interest. We prove the lower bound in Section 3.4.

3.2 Preliminaries

For notational simplicity in the remainder of this chapter, it will be convenient to
treat 𝐴 as a subset of S𝑛−1 instead of a matrix. For 𝐴 ⊆ S𝑛−1, we will slightly abuse
notation and let 𝑃(𝐴) := {𝑥 ∈ R𝑛 : 〈𝑥, 𝑎〉 ≤ 1,∀𝑎 ∈ 𝐴} and 𝑄(𝐴) := conv(𝐴).

3.2.1 Cap Volumes

For a subset 𝐶 ⊆ S𝑛−1, we write 𝜎(𝐶) := 𝜎𝑛−1(𝐶) to denote the measure of 𝐶 with
respect to the uniform measure on S𝑛−1. In particular, 𝜎(S𝑛−1) = 1.

Definition 3.2.1. For 𝑤 ∈ S𝑛−1 and 𝑟 ≥ 0, we denote the spherical cap of radius 𝑟
centered at 𝑤 by 𝐶 (𝑤, 𝑟) = {𝑥 ∈ S𝑛−1 : ‖𝑤 − 𝑥‖ ≤ 𝑟}.

We say 𝐴 ⊆ S𝑛−1 is 𝜀-dense in the sphere for 𝜀 > 0 if for every 𝑤 ∈ S𝑛−1 there
exists 𝑎 ∈ 𝐴 such that 𝑎 ∈ 𝐶 (𝑤, 𝜀).

We will need relatively tight estimates on the measure of spherical caps. The
following lemma gives useful upper and lower bounds on the ratio of cap volumes.

Lemma 3.2.2. For any 𝑠, 𝜀 > 0 and 𝑣 ∈ S𝑛−1 we have

𝜎(𝐶 (𝑣, (1 + 𝑠)𝜀))
(1 + 𝑠)𝑛−1 ≤ 𝜎(𝐶 (𝑣, 𝜀)) ≤ 𝜎(𝐶 (𝑣, (1 − 𝑠)𝜀))

(1 − 𝑠)𝑛−1 ,

assuming for the first inequality that (1 + 𝑠)𝜀 ≤ 2 and for the second that 𝑠 < 1 and
𝜀 ≤ 2.

Proof. First we write the area of the cap as the following integral, for any 𝑟 ∈ [0, 2]

𝜎(𝐶 (𝑣, 𝑟)) = 𝑐𝑛−1

∫ 𝑟2/2

0

√
2𝑡 − 𝑡2

𝑛−3
dt,
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where 𝑐𝑛−1 := vol𝑛−2(S𝑛−2)/vol𝑛−1(S𝑛−1). Note that
√

2𝑡 − 𝑡2 is the radius of the
slice S𝑛−1 ∩ {𝑥 ∈ S𝑛−1 : 〈𝑥, 𝑣〉 = 1− 𝑡} = (1− 𝑡)𝑣 +

√
2𝑡 − 𝑡2(𝑆𝑛−1 ∩ 𝑣⊥). The scaling

of the volume of the central slice by
√

2𝑡 − 𝑡2
𝑛−3

instead of
√

2𝑡 − 𝑡2
𝑛−2

is to account
for the curvature of the sphere. With this integral in our toolbox, we can prove our
desired inequalities. We start with the first one, assuming that (1 + 𝑠)2𝑟2/2 ≤ 2 so
that we only take square roots of positive numbers.

𝜎(𝐶 (𝑣, (1 + 𝑠)𝜀)) = 𝑐𝑛−1

∫ (1+𝑠)2𝑟2/2

0

√
2𝑡 − 𝑡2

𝑛−3
dt

= 𝑐𝑛−1(1 + 𝑠)2
∫ 𝑟2/2

0

√
2(1 + 𝑠)2𝑢 − (1 + 𝑠)4𝑢2

𝑛−3
du

≤ 𝑐𝑛−1(1 + 𝑠)2
∫ 𝑟2/2

0

√
2(1 + 𝑠)2𝑢 − (1 + 𝑠)2𝑢2

𝑛−3
du

= (1 + 𝑠)𝑛−1𝑐𝑛−1

∫ 𝑟2/2

0

√
2𝑢 − 𝑢2

𝑛−3
du

= (1 + 𝑠)𝑛−1𝜎(𝐶 (𝑣, 𝜀)).

The second inequality is proven in a similar fashion, assuming that 1 − 𝑠 > 0:

𝜎(𝐶 (𝑣, (1 − 𝑠)𝜀)) = 𝑐𝑛−1

∫ (1−𝑠)2𝑟2/2

0

√
2𝑡 − 𝑡2

𝑛−3
dt

= 𝑐𝑛−1(1 − 𝑠)2
∫ 𝑟2/2

0

√
2(1 − 𝑠)2𝑡 − (1 − 𝑠)4𝑡2

𝑛−3
dt

≥ 𝑐𝑛−1(1 − 𝑠)2
∫ 𝑟2/2

0

√
2(1 − 𝑠)2𝑡 − (1 − 𝑠)2𝑡2

𝑛−3
dt

= (1 − 𝑠)𝑛−1𝑐𝑛−1

∫ 𝑟2/2

0

√
2𝑡 − 𝑡2

𝑛−3
dt

= (1 − 𝑠)𝑛−1𝜎(𝐶 (𝑣, 𝜀)). □

We now give absolute estimates on cap volume measure that can be found in [33].
We note that [33] parametrize spherical caps with respect to the distance of their
defining halfspace to the origin. The following lemma is derived using the fact that
the cap 𝐶 (𝑣, 𝜀), 𝜀 ∈ [0,

√
2], 𝑣 ∈ S𝑛−1, is induced by intersecting S𝑛−1 with the

halfspace 〈𝑣, 𝑥〉 ≥ 1 − 𝜀2/2, whose distance to the origin is exactly 1 − 𝜀2/2.

Lemma 3.2.3. [33, Lemma 2.1] For 𝑛 ≥ 2, 𝜀 ∈ [0,
√

2], 𝑣 ∈ S𝑛−1, the following
estimates holds:

• If 𝜀 ∈ [
√

2(1 − 2√
𝑛
),
√

2], then 𝜎(𝐶 (𝑣, 𝜀)) ∈ [1/12, 1/2].
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• If 𝜀 ∈ [0,
√

2(1 − 2√
𝑛
)], then

1
6(1 − 𝜀2/2)√𝑛

(𝜀
√

1 − 𝜀2/4)𝑛−1 ≤ 𝜎(𝐶 (𝑣, 𝜀)) ≤ 1
2(1 − 𝜀2/2)√𝑛

(𝜀
√

1 − 𝜀2/4)𝑛−1.

3.2.2 Poisson Processes

The Poisson distribution Pois(𝜆) with parameter 𝜆 ≥ 0 has probability mass function
𝑓 (𝑥, 𝜆) := 𝑒−𝜆 𝜆𝑥𝑥! , 𝑥 ∈ Z+. We note that Pois(0) is the random variable taking value
0 with probability 1. Recall that E[Pois(𝜆)] = 𝜆. We will rely on the following
standard tail-estimate (see [38, Theorem 1]):

Lemma 3.2.4. Let 𝑋 ∼ Pois(𝜆). Then for 𝑥 ≥ 0, we have that

max{Pr[𝑋 ≥ 𝜆 + 𝑥], Pr[𝑋 ≤ 𝜆 − 𝑥]} ≤ 𝑒−
𝑥2

2(𝜆+𝑥) . (3.2)

We define a random subset 𝐴 to be distributed as Pois(S𝑛−1, 𝜆), 𝜆 ≥ 0, if
𝐴 = {𝑎1, . . . , 𝑎𝑀 }, where |𝐴| = 𝑀 ∼ Pois(𝜆) and 𝑎1, . . . , 𝑎𝑀 are uniformly and
independently distributed on S𝑛−1. Note that E[|𝐴|] = 𝜆. In standard terminology, 𝐴
is called a homogeneous Poisson point process on S𝑛−1 with intensity 𝜆 > 0.

A basic fact about such a Poisson process is that the number of samples landing
in disjoint subsets are independent Poisson random variables. This property is known
as “complete randomness”, see, e.g., [56].

Proposition 3.2.5. Let 𝐴 ∼ Pois(S𝑛−1, 𝜆). Let 𝐶1, . . . , 𝐶𝑘 ⊆ S𝑛−1 be pairwise dis-
joint measurable sets. Then, the random variables |𝐴 ∩𝐶𝑖 |, 𝑖 ∈ [𝑘], are independent
and |𝐴 ∩ 𝐶𝑖 | ∼ Pois(𝜆𝜎(𝐶𝑖)), 𝑖 ∈ [𝑘].

3.2.3 Density Estimates

In this section, we give bounds on the fineness of the net induced by a Poisson
distributed subset of S𝑛−1. Roughly speaking, if 𝐴 is Pois(S𝑛−1, 𝑚) distributed then
𝐴 will be Θ((log𝑚/𝑚)1/(𝑛−1) )-dense, see Definition 3.2.1. While this estimate
is standard in the stochastic geometry, it is not so easy to find a reference giving
quantitative probabilistic bounds, as more attention has been given to establishing
exact asymptotics as 𝑚 →∞ (see [163]). We provide a simple proof of this fact here,
together with the probabilistic estimates that we will need.

Lemma 3.2.6. For 𝑚 ≥ 𝑛 ≥ 2 and 0 < 𝑝 < 𝑚−𝑛, have 𝜀 = 𝜀(𝑚, 𝑛, 𝑝) > 0 satisfy
𝜎(𝐶 (𝑣, 𝜀)) = 3𝑒 log(1/𝑝)/𝑚 < 1/12. Then, for 𝐴 ∼ Pois(S𝑛−1, 𝑚),

Pr[∃𝑣 ∈ S𝑛−1 : 𝐶 (𝑣, 𝜀) ∩ 𝐴 = ∅] ≤ 𝑝
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and for every 𝑡 ≥ 1,

Pr[∃𝑣 ∈ S𝑛−1 : |𝐶 (𝑣, 𝑡𝜀) ∩ 𝐴| ≥ 45 log(1/𝑝)𝑡𝑛−1] ≤ 𝑝.

Proof. Let 𝑁 ⊆ S𝑛−1 denote the centers of a maximal packing of spherical caps of
radius 𝜀/(2𝑛). By maximality, 𝑁 is 𝜀/𝑛-dense, i.e., an 𝜀/𝑛 net. Comparing volumes,
by Lemma 3.2.2, we see that

1 ≥ |𝑁 |𝜎(𝐶 (𝑣, 𝜀/(2𝑛)) ≥ |𝑁 | (2𝑛)−(𝑛−1)𝜎(𝐶 (𝑣, 𝜀)),

so |𝑁 | ≤ (2𝑛)𝑛−1/𝜎(𝐶 (𝑣, 𝜀)) ≤ (2𝑛)𝑛−1𝑚. By way of a net argument, using that
|𝐶 (𝑣, (1 − 1/𝑛)𝜀) ∩ 𝐴| ∼ Pois(𝑚𝜎(𝐶 (𝑣, (1 − 1/𝑛)𝜀)), ∀𝑣 ∈ S𝑛−1, we analyze our
first probability

Pr[∃𝑣 ∈ S𝑛−1 : 𝐶 (𝑣, 𝜀) ∩ 𝐴 = ∅] ≤ Pr[∃𝑣 ∈ 𝑁 : 𝐶 (𝑣, (1 − 1/𝑛)𝜀) ∩ 𝐴 = ∅]
≤ |𝑁 |max

𝑣∈𝑁
Pr[𝐶 (𝑣, (1 − 1/𝑛)𝜀) ∩ 𝐴 = ∅]

≤ (2𝑛)𝑛−1𝑚𝑒−𝑚𝜎 (𝐶 (𝑣, (1−1/𝑛) 𝜀))

≤ (2𝑛)𝑛−1𝑚𝑒−(1−1/𝑛)𝑛−1𝑚𝜎 (𝐶 (𝑣,𝜀))

≤ (2𝑛)𝑛−1𝑚𝑒−3 log(1/𝑝) ≤ 𝑝.

We now prove the second estimate. Using the cap size estimate from Lemma 3.2.2,
we have𝑚𝜎(𝐶 (𝑣, (1+1/𝑛)𝑡𝜀)) ≤ (1+1/𝑛)𝑛−1𝑡𝑛−1𝑚𝜎(𝐶 (𝑣, 𝜀)) ≤ 3𝑒2𝑡𝑛−1 log(1/𝑝).
Write 𝜆 := 3𝑒2𝑡𝑛−1 log(1/𝑝). By a similar net argument as above, we see that

Pr[∃𝑣 ∈ S𝑛−1 : |𝐶 (𝑣, 𝑡𝜀) ∩ 𝐴| ≥ 2𝜆] ≤ |𝑁 |max
𝑣∈𝑁

Pr[|𝐶 (𝑣, (1 + 1/𝑛)𝑡𝜀) ∩ 𝐴| ≥ 2𝜆]

≤ |𝑁 | Pr
𝑋∼Pois(𝜆)

[𝑋 ≥ 2𝜆]

≤ |𝑁 |𝑒−
(
2𝜆−𝑚𝜎 (𝐶 (𝑣, (1+1/𝑛)𝑡 𝜀))

)2
/4𝜆

( by the Poisson tailbound, Lemma 3.2.4 )

≤ |𝑁 |𝑒− 𝜆
4 ≤ (2𝑛)𝑛−1𝑚𝑒−3 log(1/𝑝) ≤ 𝑝.

The proof is complete when we observe that 2𝜆 ≤ 45𝑡𝑛−1 log(1/𝑝). □

We now give effective bounds on the density estimate 𝜀 above. Note that taking
the (𝑛 − 1)𝑡ℎ root of the bounds for 𝜀𝑛−1 below yields 𝜀 = Θ((log𝑚/𝑚)1/(𝑛−1) ) for
𝑚 = 𝑛Ω(1) and 𝑝 = 1/𝑚−𝑛. The stated bounds follow directly from the cap measure
estimates in Lemma 3.2.3.
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Corollary 3.2.7. Let 𝜀 > 0 be as in Lemma 3.2.6, i.e., satisfying 𝜎(𝐶 (𝑣, 𝜀)) =
3𝑒 log(1/𝑝)/𝑚 ≤ 1/12. Then 𝜀 ∈ [0,

√
2(1 − 2√

𝑛
)],

𝜀𝑛−1 ≥ 12𝑒 log(1/𝑝)/𝑚

and (
𝜀/
√

2
)𝑛−1

≤
(
𝜀
√

1 − 𝜀2/4
)𝑛−1

≤ 18
√
𝑛 log(1/𝑝)/𝑚.

Proof. The claim 𝜀 ∈ [0,
√

2(1 − 2√
𝑛
)] follows by Lemma 3.2.3 part 1 and our

assumption that 𝜎(𝐶 (𝑣, 𝜀)) ≤ 1/12. The lower bound on 𝜀𝑛−1 follows from the
upper bound from Lemma 3.2.3 part 2

3𝑒 log(1/𝑝)
𝑚

= 𝜎(𝐶 (𝑣, 𝜀)) ≤ 1
2(1 − 𝜀2/2)√𝑛

(𝜀
√

1 − 𝜀2/4)𝑛−1 ≤ 𝜀
𝑛−1

4
,

where the last inequality follows since 𝜀 ∈ [0,
√

2(1 − 2√
𝑛
)]. For the upper bound on

𝜀, we rely on the corresponding estimate in Lemma 3.2.3 part 2:

3𝑒 log(1/𝑝)
𝑚

= 𝜎(𝐶 (𝑣, 𝜀)) ≥ (𝜀
√

1 − 𝜀2/4)𝑛−1

6(1 − 𝜀2/2)√𝑛
≥ (𝜀

√
1 − 𝜀2/4)𝑛−1

6
√
𝑛

≥ (𝜀/
√

2)𝑛−1

6
√
𝑛

,

where the last inequality follows from 𝜀 ∈ [0,
√

2]. The desired inequalities now
follow by rearranging. □

3.2.4 Concentration for Nearly-Independent Random Variables

We will use the following variant on Bernstein’s inequality that is a direct consequence
of [112, Theorem 2.3], which proves a more general result using the fractional
chromatic number of the dependency graph.

Lemma 3.2.8. Suppose that𝑌1, . . . , 𝑌𝑘 are random variables taking values in [0, 𝑀]
and Var(𝑌𝑖) ≤ 𝜎2 for each 𝑖 ∈ [𝑘]. Assume furthermore that there exists a partition
𝐼1 ∪ 𝐼2 ∪ · · · ∪ 𝐼𝑞 = {𝑌1, . . . , 𝑌𝑘 } such that the random variables in any one set 𝐼 𝑗 are
mutually independent. Then for any 𝑡 ≥ 0 we get

Pr

[����� 𝑘∑
𝑖=1
𝑌𝑖 − E[

𝑘∑
𝑖=1
𝑌𝑖]

����� ≥ 𝑡
]
≤ 2 exp

(
−8𝑡2

25𝑞(𝑘𝜎2 + 𝑀𝑡/3)

)
When we use the above lemma, we will bound the variance of the random variables

using the following inequality:
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Lemma 3.2.9. Let 𝑌 ∈ [0, 𝑀] be a random variable and E[𝑌 ] = 𝜇. Then Var(𝑌 ) ≤
𝜇(𝑀 − 𝜇).

Proof. The inequality follows from Var(𝑌 ) = E[𝑌2] −𝜇2 ≤ 𝑀E[𝑌 ] −𝜇2 = 𝜇(𝑀−𝜇),
where we have used that 𝑌2 ≤ 𝑀𝑌 for 𝑌 ∈ [0, 𝑀]. □

3.3 Shadow size and upper bounding the diameter

In the first part of this section, we prove a concentration result on the number of
shadow vertices of 𝑃(𝐴). This addresses an open problem from [28]. In the second
part, we use the resulting tools to prove Theorem 3.3.5, our high-probability upper
bound on the diameter of 𝑃(𝐴).

We start by defining a useful set of paths for which we know their expected lengths.

Definition 3.3.1. Let 𝑃 ⊆ R𝑛 be a polyhedron and 𝑊 ⊆ R𝑛 be a two-dimensional
linear subspace. We denote by S (𝑃,𝑊) the set of shadow vertices: the vertices of 𝑃
that maximize a non-zero objective function 〈𝑤, ·〉 with 𝑤 ∈ 𝑊 .

From standard polyhedral theory, we get a characterization of shadow vertices:

Lemma 3.3.2. Let 𝑃(𝐴) be a polyhedron given by 𝐴 ⊆ R𝑛 and 𝑤 ∈ R𝑛 \ {®0}. A
vertex 𝑣 ∈ 𝑃(𝐴) maximizes 〈𝑤, ·〉 if and only if 𝑤R+ ∩ conv{𝑎 ∈ 𝐴 : 〈𝑎, 𝑣〉 = 1} ≠ ∅.

Hence for 𝑊 ⊆ R𝑛 a two-dimensional linear subspace, a vertex 𝑣 ∈ 𝑃(𝐴) is a
shadow vertex 𝑣 ∈ S (𝑃(𝐴),𝑊) if and only if conv{𝑎 ∈ 𝐴 : 〈𝑎, 𝑣〉 = 1} ∩𝑊 \ {®0} ≠ ∅.

The set of shadow vertices for a fixed plane 𝑊 induces a connected subgraph in
the graph consisting of vertices and edges of 𝑃, and so any two shadow vertices are
connected by a path of length at most |S (𝑃,𝑊) |. As such, for nonzero 𝑤1, 𝑤2 ∈ 𝑊 ,
we might speak of a shadow path from 𝑤1 to 𝑤2 to denote a path from a maximizer
of 〈𝑤1, ·〉 to a maximizer of 〈𝑤2, ·〉 that stays inside S (𝑃,𝑊) and is monotonous with
respect to 〈𝑤2, ·〉. The shadow path was studied by Borgwardt:

Theorem 3.3.3 ([28, 29]). Let 𝑚 ≥ 𝑛 and fix a two-dimensional linear subspace
𝑊 ⊆ R𝑛. Pick any probability distribution onR𝑛 that is invariant under rotations and
let the entries of 𝐴 ⊆ R𝑛, |𝐴| = 𝑚, be independently sampled from this distribution.
Then, almost surely, for any linearly independent 𝑤1, 𝑤2 ∈ 𝑊 there is a unique
shadow path from 𝑤1 to 𝑤2. Moreover, the vertices in S (𝑃(𝐴),𝑊) are in one-to-one
correspondence to the vertices of 𝜋𝑊 (𝑃(𝐴)), the orthogonal projection of 𝑃(𝐴) onto
𝑊 . The expected length of the shadow path from 𝑤1 to 𝑤2 is at most

E[|S (𝑃(𝐴),𝑊) |] = 𝑂 (𝑛2𝑚
1

𝑛−1 ).
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This upper bound is tight up to constant factors for the uniform distribution on S𝑛−1.

We prove a tail bound for the shadow size when 𝐴 ∼ Pois(S𝑛−1, 𝑚). This result
answers a question of Borgwardt in the asymptotic regime, regarding whether bounds
on higher moments of the shadow size can be given. To obtain such concentration,
we show that the shadow decomposes into a sum of nearly independent “local shad-
ows”, using that 𝐴 will be 𝜀-dense per Lemma 3.2.6, allowing us to apply standard
concentration results for sums of nearly independent random variables.

Theorem 3.3.4 (Shadow Size Concentration). Let 𝑒
−𝑚

18
√
𝑛(76

√
2)𝑛−1 < 𝑝 < 𝑚−2𝑛 and let

𝑡𝑝 := max
(√
𝑂 (𝑈𝑛2𝑚

1
𝑛−1 log(1/𝑝)), 𝑂 (𝑈 log(1/𝑝))

)
for𝑈 := 𝑂 (𝑛2𝑛2 (log(1/𝑝))𝑛). If 𝐴 ∼ Pois(S𝑛−1, 𝑚) then the shadow size satisfies

Pr
[���|S (𝑃(𝐴),𝑊) | − E[|S (𝑃(𝐴),𝑊) |]��� > 𝑡𝑝] ≤ 4𝑝.

In the second part of this section, we extend the resulting tools to obtain our upper
bound on the diameter.

Theorem 3.3.5 (Diameter Upper Bound). Let 𝑒
−𝑚

18
√
𝑛(76

√
2)𝑛−1 < 𝑝 < 𝑚−2𝑛. If 𝐴 =

{𝑎1, . . . , 𝑎𝑀 } ∈ S𝑛−1, where 𝑀 is Poisson with E[𝑀] = 𝑚, and 𝑎1, . . . , 𝑎𝑀 are
uniformly and independently distributed in S𝑛−1. Then, we have that

Pr[diam(𝑃(𝐴)) > 𝑂 (𝑛2𝑚
1

𝑛−1 + 𝑛4𝑛 log(1/𝑝)2)] ≤ 𝑂 (√𝑝).

3.3.1 Only ‘nearby’ constraints are relevant

We will start by showing that, with very high probability, constraints that are ‘far
away’ from a given point on the sphere will not have any impact on the local shape
of paths. That will result in a degree of independence between different parts of the
sphere, which will be essential in getting concentration bounds on key quantities.

Lemma 3.3.6. If 𝐴 ⊆ S𝑛−1 is 𝜀-dense for 𝜀 ∈ [0,
√

2) then

B𝑛2 ⊆ 𝑃(𝐴) ⊆
(
1 − 𝜀

2

2

)−1

B𝑛2 .

Proof. The first inclusion follows immediately from the construction of 𝑃(𝐴). We
now show the second inclusion. Taking 𝑥 ∈ 𝑃(𝐴) \ {®0}, we must show that ‖𝑥‖ ≤
(1−𝜀2/2)−1. For this purpose, choose 𝑎 ∈ 𝐴 such that ‖𝑎−𝑥/‖𝑥‖‖ ≤ 𝜀, which exists
by our assumption that 𝐴 is 𝜀-dense. Since 𝜀2 ≥ ‖𝑎−𝑥/‖𝑥‖‖2 = 2(1−〈𝑎, 𝑥/‖𝑥‖〉), we
have that 〈𝑎, 𝑥/‖𝑥‖〉 ≥ 1−𝜀2/2. Since 𝑥 ∈ 𝑃(𝐴), we have 1 ≥ 〈𝑎, 𝑥〉 ≥ (1−𝜀2/2)‖𝑥‖,
and the bound follows by rearranging. □
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𝑤1𝑤2

𝑎

𝑣
‖𝑣 ‖

𝑣1
𝑣′1

𝑣′1
‖𝑣′1 ‖

𝑣

Figure 3.2: Illustration of the proof of Lemma 3.3.8. The inner (resp. outer dotted)
curve represents part of the sphere S𝑛−1 (resp. (1 − 𝜀2/2)−1S𝑛−1). The horizontal
dashed line represents the hyperplane {𝑥 ∈ R𝑑 : 〈𝑥, 𝑤2〉 = 〈𝑣1, 𝑤2〉}. The two
oblique dashed line segments represent parts of the hyperplanes tangent to the unit
sphere at the points 𝑎 and 𝑤1. The grey area represents the set 𝐵.

Lemma 3.3.7. If 𝑤 ∈ S𝑛−1, 𝛼 < 1, ‖𝑣‖ ≤ (1 − 𝛼)−1 and 〈𝑣, 𝑤〉 ≥ 1 then we get
‖𝑣/‖𝑣‖ − 𝑤‖2 ≤ 2𝛼.

Proof. We have 1 ≤ 〈𝑣, 𝑤〉 = ‖𝑣‖ · 〈𝑣/‖𝑣‖, 𝑤〉 ≤ (1 − 𝛼)−1〈𝑣/‖𝑣‖, 𝑤〉. Hence
1−‖𝑣/‖𝑣‖−𝑤‖2/2 = 〈𝑣/‖𝑣‖, 𝑤〉 ≥ 1−𝛼, which exactly implies that ‖𝑣/‖𝑣‖−𝑤‖2 ≤
2𝛼 as required. □

We will use the above lemmas to prove the main technical estimate of this sub-
section: if 𝐴 ⊆ S𝑛−1 is 𝜀-dense and 𝑤1, 𝑤2 ∈ S𝑛−1 satisfy ‖𝑤1 − 𝑤2‖ ≤ 2𝜀/𝑛
then any vertex on any path on 𝑃(𝐴) starting at a maximizer of 〈𝑤1, ·〉 that is non-
decreasing with respect to 〈𝑤2, ·〉 can only be tight at constraints 〈𝑎, 𝑥〉 = 1 induced
by 𝑎 ∈ 𝐴 ∩ 𝐶 (𝑤2, (2 + 2/𝑛)𝜀). All other constraints are strictly satisfied by every
vertex on such a monotone path.

Lemma 3.3.8. Let 𝜀 ∈ [0, 1] and assume that 𝑤1, 𝑤2 ∈ S𝑛−1 satisfy ‖𝑤1 − 𝑤2‖ ≤
(1 − 𝜀2/2). Let 𝑣1, 𝑣 ∈ R𝑛 satisfy 〈𝑤1, 𝑣1〉 ≥ 1 and 〈𝑤2, 𝑣〉 ≥ 〈𝑤2, 𝑣1〉, and assume
‖𝑣1‖, ‖𝑣‖ ≤ (1 − 𝜀2/2)−1. Last, let 𝑎 ∈ S𝑛−1 satisfy 〈𝑎, 𝑣〉 ≥ 1. Then we have
‖𝑤2 − 𝑎‖ ≤ 2𝜀 + ‖𝑤1 − 𝑤2‖.

Proof. By Lemma 3.3.7, since 〈𝑤1, 𝑣1〉, 〈𝑎, 𝑣〉 ≥ 1 and ‖𝑤1‖ = ‖𝑎‖ = 1, we get that
‖𝑤1 − 𝑣1/‖𝑣1‖‖, ‖𝑎 − 𝑣/‖𝑣‖‖ ≤ 𝜀.

If 𝑤1 = 𝑤2, then by assumption 〈𝑣, 𝑤2〉 ≥ 〈𝑣1, 𝑤2〉 = 〈𝑣1, 𝑤1〉 ≥ 1. Thus,
Lemma 3.3.7 implies that ‖𝑤2− 𝑣/‖𝑣‖‖ ≤ 𝜀. By the triangle inequality, we conclude
that ‖𝑤2 − 𝑎‖ ≤ ‖𝑤2 − 𝑣/‖𝑣‖‖ + ‖𝑣/‖𝑣‖ − 𝑎‖ ≤ 2𝜀, as needed.

Now assume that 𝑤1 ≠ 𝑤2. To prove the lemma, we show that it suffices to find
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a point 𝑣′1 such that the following two inequalities hold:



 𝑣

‖𝑣‖ − 𝑤2





 ≤ 



 𝑣′1
‖𝑣′1‖

− 𝑤2





, 



 𝑣′1
‖𝑣′1‖

− 𝑤1





 ≤ 𝜀. (3.3)

Indeed, given 𝑣′1 as above, the triangle inequality and the first inequality of (3.3) imply
that

‖𝑤2 − 𝑎‖ ≤




𝑤2 −

𝑣

‖𝑣‖





 + 



 𝑣

‖𝑣‖ − 𝑎






≤




𝑤2 −

𝑣′1
‖𝑣′1‖





 + 



 𝑣

‖𝑣‖ − 𝑎






≤ ‖𝑤2 − 𝑤1‖ +




𝑤1 −

𝑣′1
‖𝑣′1‖





 + 



 𝑣

‖𝑣‖ − 𝑎




.

From here, by the second inequality of (3.3) and ‖𝑎 − 𝑣/‖𝑣‖‖ ≤ 𝜀, we get that

‖𝑤2 − 𝑎‖ ≤ ‖𝑤2 − 𝑤1‖ + 𝜀 + 𝜀,

which is the claim of the lemma. To construct 𝑣′1, let

𝐵 :=

{
𝑥 ∈ R𝑑 : 〈𝑤1, 𝑥〉 ≥ 1, ‖𝑥‖ ≤

(
1 − 𝜀

2

2

)−1}
.

and define 𝑣′1 to be the minimizer of 〈𝑤2, ·〉 in 𝐵. Since 𝑤1 ≠ 𝑤2, it is direct to verify
the 𝑣′1 is uniquely defined and satisfies ‖𝑣′1‖ = (1 −

𝜀2

2 )−1.

From Lemma 3.3.7 we have that any point 𝑥 ∈ 𝐵 satisfies ‖𝑥/‖𝑥‖ −𝑤1‖ ≤ 𝜀, and
in particular this is true for 𝑣′1, making the second inequality of (3.3) hold. Note that
𝑣1 ∈ 𝐵 as well. It remains to show the first inequality of (3.3). For this, we claim that

〈𝑤2, 𝑣〉 ≥ max{0, 〈𝑤2, 𝑣
′
1〉},

By assumption, recall that 〈𝑤2, 𝑣〉 ≥ 〈𝑤2, 𝑣1〉. The first inequality now follows since
〈𝑤2, 𝑣1〉 ≥ 〈𝑤1, 𝑣1〉 − ‖𝑤1 − 𝑤2‖‖𝑣1‖ ≥ 1 − ‖𝑤1 − 𝑤2‖(1 − 𝜀2/2)−1 ≥ 0, by our
assumption on ‖𝑤1 − 𝑤2‖. The second inequality now follows from 〈𝑤2, 𝑣1〉 ≥
〈𝑤2, 𝑣

′
1〉, which holds since 𝑣1 ∈ 𝐵 and 𝑣′1 minimizes 𝑤2 over 𝐵.

Using that ‖𝑣‖ ≤ (1 − 𝜀2/2)−1 = ‖𝑣′1‖, we conclude that

〈𝑤2,
𝑣

‖𝑣‖ 〉 ≥ 〈𝑤2,
𝑣

‖𝑣′‖ 〉 ≥ 〈𝑤2,
𝑣′1
‖𝑣′1‖
〉,

where the first inequality uses 〈𝑤2, 𝑣〉 ≥ 0. The first inequality of (3.3) now follows
from the fact that 𝑢 ∈ S𝑛−1 ↦→ ‖𝑢 − 𝑤2‖ is a decreasing function of 〈𝑢, 𝑤2〉, and thus
the proof is complete. □
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To round out this subsection, we prove that the conclusion of Lemma 3.3.8 holds
whenever 𝑣, 𝑣1 ∈ 𝑃(𝐴) and 𝐴 is 𝜀-dense in a neighbourhood around 𝑤2.

Definition 3.3.9. Given sets 𝐴,𝐶 ⊆ S𝑛−1 and 𝜀 > 0, we say that 𝐴 is 𝜀-dense for 𝐶
if for every 𝑐 ∈ 𝐶 there exists 𝑎 ∈ 𝐴 such that ‖𝑎 − 𝑐‖ ≤ 𝜀.

Lemma 3.3.10. Let 𝐴 ⊆ S𝑛−1 be compact and 𝜀-dense for 𝐶 (𝑤2, 4𝜀), 𝜀 > 0. Let
𝑣1, 𝑣 ∈ 𝑃(𝐴) and 𝑤1, 𝑤2 ∈ S𝑛−1 satisfying 〈𝑤1, 𝑣1〉 ≥ 1, 〈𝑤2, 𝑣〉 ≥ 〈𝑤2, 𝑣1〉 and
‖𝑤1 − 𝑤2‖ ≤ 𝜀. Now let 𝑎 ∈ S𝑛−1 satisfy 〈𝑎, 𝑣〉 ≥ 1. Then we have ‖𝑣1‖, ‖𝑣‖ ≤
(1 − 𝜀2/2)−1 and ‖𝑤2 − 𝑎‖ ≤ 2𝜀 + ‖𝑤1 − 𝑤2‖.

Proof. First, observe that if 𝜀 ≥ 1 then the conclusion is trivially satisfied since
‖𝑤2 − 𝑎‖ ≤ 2 ≤ 2𝜀 + ‖𝑤1 − 𝑤2‖. From now on, assume 𝜀 < 1.

Let 𝛿 = ‖𝑤1 −𝑤2‖, and let 𝐴 ⊆ 𝐴′ ⊆ S𝑛−1 be 𝜀-dense, such that 𝐴′∩𝐶 (𝑤2, 2𝜀 +
𝛿) ⊆ 𝐴. One valid choice is to take any 𝜀-net 𝑁 ⊆ S𝑛−1 and define the set 𝐴′
as 𝐴′ := 𝐴 ∪ (𝑁 \ 𝐶 (𝑤2, 2𝜀 + 𝛿)). Then any 𝑥 ∈ 𝐶 (𝑤2, 4𝜀) has an 𝑎 ∈ 𝐴 ⊆ 𝐴′

with ‖𝑎 − 𝑥‖ ≤ 𝜀 and any 𝑦 ∉ 𝐶 (𝑤2, 4𝜀) has some 𝑏 ∈ 𝑁 with ‖𝑦 − 𝑏‖ ≤ 𝑏 and
𝑏 ∉ 𝐶 (𝑤2, 3𝜀). Moreover we have (𝑁 \ 𝐶 (𝑤2, 3𝜀)) ∩ 𝐶 (𝑤2, (2 + 2/𝑛)𝜀) = ∅ so this
choice of 𝐴′ satisfies our requirements.

If 𝑣, 𝑣1 ∈ 𝑃(𝐴′), then ‖𝑣‖, ‖𝑣1‖ ≤ (1−𝜀2/2)−1 by Lemma 3.3.6 and we can apply
Lemma 3.3.8 to the set 𝐴′ and vectors 𝑤1, 𝑤2, 𝑣, 𝑣1 and 𝑎 to conclude ‖𝑤2 − 𝑎‖ ≤
2𝜀 + ‖𝑤1 − 𝑤2‖ as required.

We now prove that both the case 𝑣1 ∉ 𝑃(𝐴′) and the case 𝑣1 ∈ 𝑃(𝐴′), 𝑣 ∉ 𝑃(𝐴′)
lead to contradiction. First, observe that given 𝑤1 and 𝑤2, the set of pairs (𝑣1, 𝑣) that
satisfy 〈𝑤1, 𝑣1〉 ≥ 1, 〈𝑤2, 𝑣〉 ≥ 〈𝑤2, 𝑣1〉 and ‖𝑣1‖, ‖𝑣‖ ≤ (1 − 𝜀2/2)−1 is a closed
convex set and contains (𝑤1, 𝑤1).

If 𝑣1 ∉ 𝑃(𝐴′), let (𝑥, 𝑦) be the convex combination of (𝑣1, 𝑣1) and (𝑤1, 𝑤1) such
that 𝑥 = 𝑦 ∈ 𝑃(𝐴′) and there exists 𝑎′ ∈ 𝐴′ \ 𝐴 such that 〈𝑎′, 𝑥〉 = 1. Such 𝑎′ will
exist because 𝐴′ is compact.

Otherwise we have 𝑣 ∉ 𝑃(𝐴′) and let (𝑥, 𝑦) be a convex combination of (𝑣1, 𝑣)
and (𝑤1, 𝑤1) such that 𝑥, 𝑦 ∈ 𝑃(𝐴′) and there exists 𝑎′ ∈ 𝐴′ \ 𝐴 such that 〈𝑎′, 𝑥〉 = 1.
Such 𝑎′ will exist because 𝐴′ is compact.

Either way, apply Lemma 3.3.8 to 𝐴′, 𝑤1, 𝑤2, 𝑥, 𝑦 and 𝑎′ to find that ‖𝑤2 − 𝑎′‖ ≤
2𝜀 + ‖𝑤1 − 𝑤2‖. This contradicts the earlier claim that 𝑎′ ∈ 𝐴′ \ 𝐴. From this
contradiction we conclude that 𝑣, 𝑣1 ∈ 𝑃(𝐴′), which finishes the proof. □

Note also the contrapositive of the above statement: for 𝑤1, 𝑤2, 𝑣1, 𝑣, 𝐴 satisfying
the conditions above, we have for 𝑎 ∈ S𝑛−1 that ‖𝑤2 − 𝑎‖ > 2𝜀 + ‖𝑤1 − 𝑤2‖ implies
〈𝑎, 𝑣〉 < 1.
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3.3.2 Locality, independence, and concentration

With an eye to Lemma 3.3.10, this subsection is concerned with proving concen-
tration for sums of random variables that behave nicely when 𝐴 is dense in given
neighbourhoods. The specific random variables that we will use this for are the paths
between the maximizers of nearby objective vectors 𝑤1, 𝑤2 ∈ S𝑛−1.

Definition 3.3.11. Given 𝑚, 𝑛, 𝑝, let 𝜀 = 𝜀(𝑚, 𝑛, 𝑝) > 0 be as in Lemma 3.2.6 and
𝐴 ⊆ R𝑛 be a random finite set. For 𝑥, 𝑦 ∈ S𝑛−1 define the event 𝐸𝑥,𝑦 as:

• 𝐴 is 𝜀-dense for 𝐶 (𝑥, ‖𝑥 − 𝑦‖ + 4𝜀), and

• for every 𝑧 ∈ [𝑥, 𝑦] we have����𝐴 ∩ 𝐶 ( 𝑧‖𝑧‖ , (2 + 2/𝑛)𝜀)
���� ≤ 45𝑒2𝑛 log(1/𝑝)

A random variable 𝐾 is called (𝑥, 𝑦)-local if 𝐸𝑥,𝑦 implies that 𝐾 is a function of
𝐴 ∩ 𝐶 (𝑥, 5𝜀 + ‖𝑥 − 𝑦‖).

In particular, we will use that if 𝐾 is (𝑥, 𝑦)-local then 𝐾1[𝐸𝑥,𝑦] is a function of
𝐴 ∩ 𝐶 (𝑥, 5𝜀 + ‖𝑥 − 𝑦‖).

To help prove that certain paths are local random variables, we will use the
following lemma.

Lemma 3.3.12. Let 𝑤1, 𝑤2 ∈ S𝑛−1, and have 𝑤1 = 𝑣1, 𝑣2, . . . , 𝑣𝑘+1 = 𝑤2 be equally
spaced on a shortest geodesic segment on S𝑛−1 connecting 𝑤1 and 𝑤2. Then for every
𝑖 ∈ [𝑘] we have ‖𝑤1 − 𝑤2‖/𝑘 ≤ ‖𝑣𝑖 − 𝑣𝑖+1‖ ≤ 𝜋‖𝑤1 − 𝑤2‖/𝑘 .

Proof. By the triangle inequality, we have ‖𝑤1 −𝑤2‖ ≤
∑𝑘
𝑖=1 ‖𝑣𝑖 − 𝑣𝑖+1‖. Since each

of the line segments [𝑣𝑖 , 𝑣𝑖+1] has identical length, this gives us the first inequality
𝑘 ‖𝑣𝑖 − 𝑣𝑖+1‖ ≥ ‖𝑤1 − 𝑤2‖.

Furthermore, we know that the geodesic segment connecting 𝑤1 and 𝑤2 has
length at most 𝜋‖𝑤1 − 𝑤2‖. From this we get ∑𝑘

𝑖=1 ‖𝑣𝑖 − 𝑣𝑖+1‖ ≤ 𝜋‖𝑤1 − 𝑤2‖ and
hence 𝜋‖𝑤1 − 𝑤2‖ ≥ 𝑘 ‖𝑣𝑖 − 𝑣𝑖+1‖. □

Many paths on 𝑃(𝐴) turn out to be such local random variables. One example
are short segments of the shadow paths from Theorem 3.3.3.

Lemma 3.3.13. Let 𝑤1, 𝑤2 ∈ S𝑛−1 satisfy ‖𝑤1 − 𝑤2‖ ≤ 𝜀. Then the length of the
shadow path on 𝑃(𝐴) from 𝑤1 to 𝑤2 is a (𝑤1, 𝑤2)-local random variable. Assuming
that ‖𝑤1 − 𝑤2‖ ≤ 𝜀, the event 𝐸𝑤1,𝑤2 implies that this path has length at most
2𝑛(45𝑒2𝑛 log(1/𝑝))𝑛.
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Proof. Let us first assume that ‖𝑤1 − 𝑤2‖ ≤ 2𝜀/𝑛. Consider the points 𝑣1, 𝑣 ∈
𝑃(𝐴 ∩𝐶 (𝑤2, 5𝜀)) such that 〈𝑤1, 𝑣1〉 ≥ 1 and 〈𝑤2, 𝑣〉 ≥ 〈𝑤2, 𝑣1〉. By Lemma 3.3.10,
assuming 𝐸𝑤1,𝑤2 , any such points have bounded norm. Hence, we can take 𝑣1 to be
a vertex maximizing 〈𝑤1, ·〉 and 𝑣 ∈ 𝑃(𝐴 ∩ 𝐶 (𝑤2, 5𝜀)) be any vertex on the shadow
path from 𝑤1 to 𝑤2.

Again by Lemma 3.3.10, assuming 𝐸𝑤1,𝑤2 , every 𝑎 ∈ 𝐴 such that 〈𝑎, 𝑣〉 = 1
satisfies 𝑎 ∈ 𝐶 (𝑤2, (2 + 2/𝑛)𝜀), meaning that 𝑣, 𝑣1 ∈ 𝑃(𝐴) as well.

Now Lemma 3.3.2 implies that if 𝐸𝑤1,𝑤2 then any vertex of 𝑃(𝐴 ∩ 𝐶 (𝑤2, 5𝜀) on
its shadow path from 𝑤1 to 𝑤2 is a shadow vertex of 𝑃(𝐴) on the shadow path from
𝑤1 to 𝑤2. Hence the shadow path on 𝑃(𝐴) from 𝑤1 to 𝑤2 is a (𝑤1, 𝑤2)-local random
variable.

The upper bound follows because every vertex on the shadow path is visited at most
once and, assuming 𝐸𝑤1,𝑤2 , almost surely every vertex on the shadow path is induced
by 𝑛 constraints out of 𝐴 ∩𝐶 (𝑤2, (2 + 2/𝑛)𝜀). The total number of subsets of size 𝑛
of 𝐴 ∩ 𝐶 (𝑤2, (2 + 2/𝑛)𝜀) is at most |𝐴 ∩ 𝐶 (𝑤2, (2 + 2/𝑛)𝜀) |𝑛 ≤ (45𝑒2𝑛 log(1/𝑝))𝑛
by 𝐸𝑤1,𝑤2 .

To extend the conclusion to the case when 2𝜀/𝑛 < ‖𝑤1 − 𝑤2‖ ≤ 𝜀, pick 𝑤1 =
𝑣1, 𝑣2, . . . , 𝑣2𝑛+1 = 𝑤2 evenly spaced on the shortest geodesic segment connecting
𝑤1 and 𝑤2. For every 𝑘 ∈ [2𝑛], by Lemma 3.3.12 the shadow path from 𝑣𝑘 to
𝑣𝑘+1 satisfies ‖𝑣𝑘 − 𝑣𝑘+1‖ ≤ 2𝜀/𝑛 and is thus a (𝑣𝑘 , 𝑣𝑘+1)-local random variable and
𝐸𝑣𝑘 ,𝑣𝑘+1 implies that this shadow path has length at most (45𝑒2𝑛 log(1/𝑝))𝑛 when
𝐸𝑣𝑘 ,𝑣𝑘+1 .

Now observe that the shadow path from 𝑤1 to 𝑤2 is obtained by concatenating
the shadow paths from 𝑣𝑘 to 𝑣𝑘+1 for 𝑘 ∈ [𝑛]. Since 𝐸𝑤1,𝑤2 implies 𝐸𝑣𝑘 ,𝑣𝑘+1 for
every 𝑘 ∈ [2𝑛], each of the shadow paths from 𝑣𝑘 to 𝑣𝑘+1 is a (𝑤1, 𝑤2)-local random
variable. Hence the shadow path from 𝑤1 to 𝑤2 is a (𝑤1, 𝑤2)-local random variable
and has length at most 2𝑛(45𝑒2𝑛 log(1/𝑝))𝑛. □

Lemma 3.3.14. Let 0 < 𝑝 < 𝑚−2𝑛 and let 𝜀 = 𝜀(𝑚, 𝑛, 𝑝) < 1/76 be as in
Lemma 3.2.6 and let 𝑘 ≥ 2𝜋/𝜀 be the smallest number divisible by 76. Let𝑊 ⊆ R𝑛
be a fixed 2D linear subspace and let 𝑤1, . . . , 𝑤𝑘 , 𝑤𝑘+1 = 𝑤1 ∈ 𝑊 ∩ S𝑛−1 be equally
spaced around the circle. Assume for every 𝑖 ∈ [𝑘] that 𝐾𝑖 ≥ 0 is a (𝑤𝑖 , 𝑤𝑖+1)-local
random variable and there exists 𝑈 ≤ 𝑚𝑛 such that 𝐾𝑖 ≤ 𝑈 whenever 𝐸𝑤𝑖 ,𝑤𝑖+1 .
Furthermore assume that E[∑𝑘

𝑖=1 𝐾𝑖] ≤ 𝑂 (𝑛
2𝑚

1
𝑛−1 ). Then

Pr
[ ����� ∑
𝑖∈[𝑘 ]

𝐾𝑖 − E
[ ∑
𝑖∈[𝑘 ]

𝐾𝑖
] ����� ≥ 𝑡𝑝] ≤ 4𝑝

for 𝑡𝑝 = max
(√
𝑂 (𝑈𝑛2𝑚

1
𝑛−1 log(1/𝑝)), 𝑂 (𝑈 log(1/𝑝))

)
.
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Proof. Let 𝐹 denote the event that 𝐸𝑣1,𝑣2 holds for every 𝑣1, 𝑣2 ∈ S𝑛−1. By
Lemma 3.2.6 we have Pr[𝐹] ≥ 1 − 2𝑝.

Our first observation is that Pr[∑𝑘
𝑖=1 𝐾𝑖 =

∑𝑘
𝑖=1 𝐾𝑖1[𝐸𝑖]] ≥ Pr[𝐹] ≥ 1− 𝑝. Since

both sums only take values in the interval [0, 𝑘𝑚𝑛], it follows that���E[ 𝑘∑
𝑖=1

𝐾𝑖] − E[
𝑘∑
𝑖=1

𝐾𝑖1[𝐸𝑖]]
��� ≤ 2𝑘𝑚𝑛𝑝 ≤ 1.

From the above statements we deduce that

Pr

[����� 𝑘∑
𝑖=1

𝐾𝑖 − E
[
𝑘∑
𝑖=1

𝐾𝑖

] ����� > 𝑡𝑝
]

≤ Pr

[����� 𝑘∑
𝑖=1

𝐾𝑖 − E
[
𝑘∑
𝑖=1

𝐾𝑖1[𝐸𝑖]
] ����� > 𝑡𝑝 − 1

]
≤ Pr[𝐹𝑐] + Pr

[
𝐹 ∧

����� 𝑘∑
𝑖=1

𝐾𝑖 − E
[
𝑘∑
𝑖=1

𝐾𝑖1[𝐸𝑖]
] ����� > 𝑡𝑝 − 1

]
≤ 2𝑝 + Pr

[
𝐹 ∧

����� 𝑘∑
𝑖=1

𝐾𝑖1[𝐸𝑖] − E
[
𝑘∑
𝑖=1

𝐾𝑖1[𝐸𝑖]
] ����� > 𝑡𝑝 − 1

]
≤ 2𝑝 + Pr

[����� 𝑘∑
𝑖=1

𝐾𝑖1[𝐸𝑖] − E
[
𝑘∑
𝑖=1

𝐾𝑖1[𝐸𝑖]
] ����� > 𝑡𝑝 − 1

]
.

In the above, recall that 𝐹𝑐 denotes the complement of 𝐹. We will now upper bound
the last term.

For 𝑗 ∈ [76] define 𝐼 𝑗 = {𝑖 ∈ [𝑘] | 𝑖 ≡ 𝑗 mod 76}, forming a partition
𝐼1 ∪ · · · ∪ 𝐼76 = [𝑘]. Observe that 𝑤1, . . . , 𝑤𝑘 are placed on a unit circle and every
[𝑤𝑖 , 𝑤𝑖+1] is an edge of conv(𝑤1, . . . , 𝑤𝑘), hence ∑

𝑖∈[𝑘 ] ‖𝑤𝑖 − 𝑤𝑖+1‖ ≤ 2𝜋. Since
𝑘 ≥ 2𝜋/𝜀 that gives us ‖𝑤𝑖 − 𝑤𝑖+1‖ ≤ 𝜀 for every 𝑖 ∈ [𝑘]. Next, from 𝜀 ≤ 1/76 we
know that 𝑘 ≤ 2𝜋/𝜀 + 76 ≤ 8/𝜀. Since 𝑘 ≥ 4 we have ∑

𝑖∈[𝑘 ] ‖𝑤𝑖 − 𝑤𝑖+1‖ ≥ 4 and
hence ‖𝑤𝑖 − 𝑤𝑖+1‖ ≥ 4/𝑘 ≥ 𝜀/2 for every 𝑖 ∈ [𝑘]. Last, we use that ‖𝑤𝑖 − 𝑤𝑖+76‖ ≤∑𝑖+75
𝑗=𝑖 ‖𝑤 𝑗 − 𝑤 𝑗+1‖ ≤ 76𝜀 ≤ 1 to deduce

‖𝑤𝑖 − 𝑤𝑖+76‖ ≥
1
𝜋

𝑖+75∑
𝑘=𝑖
‖𝑤𝑘 − 𝑤𝑘+1‖ ≥

76
𝜋
· 𝜀/2 > 12𝜀.

This lets us conclude that if 𝑖, 𝑖′ ∈ 𝐼 𝑗 are distinct then ‖𝑤𝑖 −𝑤𝑖′ ‖ > 12𝜀. In particular,
for any 𝑗 ∈ [76] the random variables 𝐾𝑖1[𝐸𝑖] for 𝑖 ∈ 𝐼 𝑗 are mutually independent
since they are functions of 𝐴 intersected with disjoints subsets of S𝑛−1 due to being
local random variables.
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For any 𝑖 ∈ [𝑘], the random variable 𝐾𝑖1[𝐸𝑖] ∈ [0,𝑈] has variance at most

E[𝐾𝑖1[𝐸𝑖]] ·𝑈 ≤
𝑂 (𝑛2𝑚

1
𝑛−1 )

𝑘
·𝑈

by Lemma 3.2.9.
We apply Lemma 3.2.8 to the random variables 𝐾𝑖1[𝐸𝑖] for 𝑖 ∈ [𝑘] and obtain

Pr

[����� 𝑘∑
𝑖=1

𝐾𝑖1[𝐸𝑖] − E
[
𝑘∑
𝑖=1

𝐾𝑖1[𝐸𝑖]
] ����� > 𝑡𝑝 − 1

]
≤ 2 exp

(
−8(𝑡𝑝 − 1)2

1900(𝑈𝑂 (𝑛2𝑚
1

𝑛−1 ) + (𝑡𝑝 − 1)𝑈)

)
.

By filling in 𝑡𝑝, we find that the right-hand side of the above inequality is at most 2𝑝.
Putting the bounds together we get our desired inequality

Pr
[ ∑
𝑖∈[𝑘 ]

𝐾𝑖 ≥ E
[ ∑
𝑖∈[𝑘 ]

𝐾𝑖
]
+ 𝑡

]
≤ 4𝑝. □

3.3.3 Concentration of the shadow size around its mean

To illustrate the use of the above technical result, we show in this subsection that
|S (𝑃(𝐴),𝑊) | is concentrated around its mean when 𝑚 > 2𝑂 (𝑛3) .

Recall that by Theorem 3.3.3 we have E[|S (𝑃(𝐴),𝑊) |] = Θ(𝑛2𝑚
1

𝑛−1 ).

Theorem 3.3.4 (Shadow Size Concentration). Let 𝑒
−𝑚

18
√
𝑛(76

√
2)𝑛−1 < 𝑝 < 𝑚−2𝑛 and let

𝑡𝑝 := max
(√
𝑂 (𝑈𝑛2𝑚

1
𝑛−1 log(1/𝑝)), 𝑂 (𝑈 log(1/𝑝))

)
for𝑈 := 𝑂 (𝑛2𝑛2 (log(1/𝑝))𝑛). If 𝐴 ∼ Pois(S𝑛−1, 𝑚) then the shadow size satisfies

Pr
[���|S (𝑃(𝐴),𝑊) | − E[|S (𝑃(𝐴),𝑊) |]��� > 𝑡𝑝] ≤ 4𝑝.

Proof. From Corollary 3.2.7, we know that 𝜀𝑛−1 ≤ 1
76𝑛−1 . As such, the lower bound

on 𝑝 implies that 𝜀(𝑚, 𝑛, 𝑝) < 1/76.
Let 𝑤1, . . . , 𝑤𝑘 be as in Lemma 3.3.14 and let 𝐾𝑖 denote the number of edges on

the shadow path from 𝑤𝑖 to 𝑤𝑖+1. By Lemma 3.3.13, each 𝐾𝑖 is a (𝑤𝑖 , 𝑤𝑖+1)-local
random variable which satisfies 𝐾𝑖 ≤ 2𝑛(45𝑒2𝑛 log(1/𝑝))𝑛 when 𝐸𝑤𝑖 ,𝑤𝑖+1 .

By Theorem 3.3.3 we get ∑𝑖∈[𝑘 ] 𝐾𝑖 = |S (𝑃(𝐴),𝑊) | almost surely, hence we have
E[∑𝑖∈[𝑘 ] 𝐾𝑖] ≤ 𝑂 (𝑛2𝑚

1
𝑛−1 ). We apply Lemma 3.3.14 to ∑

𝑖∈[𝑘 ] 𝐾𝑖 to conclude

Pr
[���|S (𝑃(𝐴),𝑊) | − E[|S (𝑃(𝐴),𝑊) |]��� > 𝑡] = Pr

[��� ∑
𝑖∈[𝑘 ]

𝐾𝑖 − E[
∑
𝑖∈[𝑘 ]

𝐾𝑖]
��� > 𝑡] ≤ 4𝑝.

□
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3.3.4 Upper bound on the diameter

In this section we prove our high probability upper bound on diam(𝑃(𝐴)). We start
by proving that for fixed𝑊 the vertices in S (𝑃(𝐴),𝑊) are connected by short paths,
where we aim for an error term smaller than that of Theorem 3.3.4. We require the
following abstract diameter bound from [77]. We will only need the Barnette–Larman
style bound.

Theorem 3.3.15. Let 𝐺 = (𝑉, 𝐸) be a connected graph, where the vertices 𝑉 of 𝐺
are subsets of [𝑘] of cardinality 𝑛 and the edges 𝐸 of𝐺 are such that for each 𝑢, 𝑣 ∈ 𝑉
there exists a path connecting 𝑢 and 𝑣 whose intermediate vertices all contain 𝑢 ∩ 𝑣.

Then the following upper bounds on the diameter of 𝐺 hold:

2𝑛−1 · 𝑘 − 1 (Barnette–Larman), 𝑘1+log 𝑛 − 1 (Kalai–Kleitman).

To confirm that the above theorem indeed gives variants of the Barnette–Larman
and Kalai–Kleitman bounds, let 𝐴 = {𝑎1, ..., 𝑎𝑚} ⊆ S𝑛−1 be in general position. For
a vertex 𝑥 ∈ 𝑃(𝐴), we denote 𝐴𝑥 = {𝑎 ∈ 𝐴 : 〈𝑎, 𝑥〉 = 1}. Consider the following sets

𝑉 = {𝐴𝑥 : 𝑥 is a vertex of 𝑃(𝐴)},
𝐸 = {{𝐴𝑥 , 𝐴𝑦} : [𝑥, 𝑦] is an edge of 𝑃(𝐴)}.

The graph 𝐺 = (𝑉, 𝐸) almost surely satisfies the assumptions of Theorem 3.3.15
which therefore shows that the combinatorial diameter of 𝑃(𝐴) is less than min(2𝑛−1 ·
𝑀 − 1, 𝑀1+log 𝑛 − 1). Up to a constant factor difference, these bounds correspond to
the same bounds described in the introduction. Instead of applying the bound to the
full graph however, we will use it to bound the length of local paths.

Lemma 3.3.16. Let 𝑤1, 𝑤2 ∈ S𝑛−1 satisfy ‖𝑤1 − 𝑤2‖ ≤ 𝜀, where 𝜀 = 𝜀(𝑚, 𝑛, 𝑝) is
as in Lemma 3.2.6. Furthermore, let 𝐾 denote the maximum over all 𝑤 ∈ [𝑤1, 𝑤2] of
the length of the shortest path from a maximizer 𝑣𝑤 ∈ 𝑃(𝐴) of 〈𝑤, ·〉 to the maximizer
of 〈𝑤2, ·〉 of which every vertex 𝑣 ∈ 𝑃(𝐴) on the path satisfies 〈𝑤2, 𝑣〉 ≥ 〈𝑤2, 𝑣𝑤 〉.
Then 𝐾 is a (𝑤1, 𝑤2)-local random variable and 𝐸𝑤1,𝑤2 implies that 𝐾 is at most
45𝑒𝑛4𝑛 log(1/𝑝).

Proof. We start by assuming ‖𝑤1−𝑤2‖ ≤ 2𝜀/𝑛. Let𝑤 ∈ [𝑤1, 𝑤2] and let 𝑣𝑤 ∈ 𝑃(𝐴)
be a vertex maximizing 〈𝑤, ·〉. By Lemma 3.3.10, assuming 𝐸𝑤1,𝑤2 , for every vertex
𝑣 ∈ 𝑃(𝐴) satisfying 〈𝑤2, 𝑣〉 ≥ 〈𝑤2, 𝑣𝑤 〉 and every 𝑎 ∈ 𝐴 such that 〈𝑎, 𝑣〉 ≥ 1 we
have 𝑎 ∈ 𝐴 ∩ 𝐶 (𝑤2, (2 + 2/𝑛)𝜀).

First, this implies that if 𝐸𝑤1,𝑤2 and if 𝑣 ∈ R𝑛 is satisfies 〈𝑤2, 𝑣〉 ≥ 〈𝑤2, 𝑣𝑤 〉
then we need only inspect 𝐴 ∩ 𝐶 (𝑤2, (2 + 2/𝑛)𝜀) to decide if 𝑣 is a vertex of 𝑃(𝐴).
From this we conclude that if 𝐸𝑤1,𝑤2 then the shortest path described in the lemma



102 3. Bounds on the Combinatorial Diameter of Random Polytopes

statement can be computed knowing only 𝐴 ∩ 𝐶 (𝑤2, (2 + 2/𝑛)𝜀). This implies that
the path length is a (𝑤1, 𝑤2)-local random variable.

Second, assuming 𝐸𝑤1,𝑤2 we consider the sets

𝑉 = {𝑣 ∈ 𝑃(𝐴) : 𝑣 is a vertex and 〈𝑤2, 𝑣〉 ≥ 〈𝑤2, 𝑣1〉},

𝐴 = {𝑎 ∈ 𝐴 : there exist 𝑣 ∈ 𝑉 such that 〈𝑎, 𝑣〉 = 1} ⊆ 𝐴 ∩ 𝐶
(
𝑤2,

(
2 + 2

𝑛

)
𝜀

)
.

The last inclusion follows directly from Lemma 3.3.10.
Recall the notation 𝐴𝑣 = {𝑎 ∈ 𝐴 : 〈𝑎, 𝑣〉 = 1} for vertices 𝑣 ∈ 𝑃(𝐴). We will

apply Theorem 3.3.15 to the graph

𝑉 = {𝐴𝑣 : 𝑣 ∈ 𝑉} ' 𝑉,
𝐸 = {{𝐴𝑣1 , 𝐴𝑣2} : 𝑣1, 𝑣2 ∈ 𝑉, [𝑣1, 𝑣2] is an edge of 𝑃(𝐴)}.

We need to check that the assumptions of Theorem 3.3.15 are met. First we note that
almost surely 𝑃(𝐴) is a simple polytope and thus the vertices of the graph (𝑉, 𝐸)
are subsets of 𝐴 of cardinality 𝑛. Consider two vertices 𝐴𝑣 = {𝑎𝑖1 , . . . , 𝑎𝑖𝑛}, 𝐴𝑣′ =
{𝑎𝑖′1 , . . . , 𝑎𝑖′𝑛} ∈ 𝑉 . Observe that the set

𝐹 = {𝑥 ∈ 𝑃(𝐴) : 〈𝑥, 𝑎〉 = 1 ∀𝑎 ∈ 𝐴𝑣 ∩ 𝐴𝑣′}

is the minimum face of 𝑃(𝐴) containing both 𝑣 and 𝑣′. We can build paths 𝑣0 =
𝑣, 𝑣1, . . . , 𝑣𝑘 and 𝑣′0 = 𝑣′, 𝑣′1, . . . , 𝑣

′
𝑘′ satisfying the following monotonicity properties

〈𝑤2, 𝑣〉 = 〈𝑤2, 𝑣0〉 ≤ 〈𝑤2, 𝑣1〉 ≤ · · · ≤ 〈𝑤2, 𝑣𝑘〉 = arg max{〈𝑤2, 𝑥〉 : 𝑥 ∈ 𝐹},
〈𝑤2, 𝑣

′〉 = 〈𝑤2, 𝑣
′
0〉 ≤ 〈𝑤2, 𝑣

′
1〉 ≤ · · · ≤ 〈𝑤2, 𝑣

′
𝑘′〉 = arg max{〈𝑤2, 𝑥〉 : 𝑥 ∈ 𝐹}.

Moreover one can assume that 𝑣𝑘 = 𝑣′𝑘′ by potentially completing the paths moving
along the edges of arg max{〈𝑤2, 𝑥〉 : 𝑥 ∈ 𝐹} (in the case this face contains more
than one vertex). By construction all vertices 𝑣𝑖 and 𝑣′𝑖 belong to 𝑉 . Stitching the
two paths and adopting the dual point of view we found a path 𝐴𝑣 = 𝐴𝑣0 , . . . , 𝐴𝑣𝑘 =
𝐴𝑣′

𝑘′
, . . . 𝐴𝑣′0 = 𝐴𝑣′ whose vertices contain the intersection 𝐴𝑣 ∩ 𝐴𝑣′.
We can thus apply Theorem 3.3.15 and conclude that there is a path in the graph

(𝑉, 𝐸) from 𝐴𝑣1 to 𝐴𝑣2 of length at most 2𝑛−1 · |𝐴 ∩ 𝐶 (𝑤2, (2 + 2/𝑛)𝜀) |. It follows
that 𝐾 ≤ 2𝑛−1 · |𝐴 ∩ 𝐶 (𝑤2, (2 + 2/𝑛)𝜀) |.

To extend the conclusion to the case when 2𝜀/𝑛 < ‖𝑤1 − 𝑤2‖ ≤ 𝜀, we do the
same as in the proof of Lemma 3.3.13. □

Theorem 3.3.17. Let 0 < 𝑝 < 𝑚−2𝑛 and let

𝑡𝑝 = max
(√
𝑂 (𝑈𝑛2𝑚

1
𝑛−1 log(1/𝑝)), 𝑂 (𝑈 log(1/𝑝))

)
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for 𝑈 = 𝑂 (𝑛4𝑛 log(1/𝑝)). If 𝑊 ⊆ R𝑛 is a fixed 2D linear subspace and 𝐴 ∼
Pois(S𝑛−1, 𝑚), the largest distance 𝑇 between any two shadow vertices satisfies

Pr[𝑇 ≥ 𝑂 (𝑛2𝑚
1

𝑛−1 ) + 𝑡𝑝] ≤ 4𝑝

Proof. Let𝑤1, . . . , 𝑤𝑘 be as in Lemma 3.3.14 and let𝐾𝑖 denote the maximum over all
𝑤 ∈ [𝑤𝑖 , 𝑤𝑖+1] of the length of the shortest path from a shadow vertex 𝑣𝑤 maximizing
〈𝑤, ·〉 to a vertex maximizing 〈𝑤𝑖+1, ·〉 such that every vertex 𝑣 on this path satisfies
〈𝑤𝑖+1, 𝑣〉 ≥ 〈𝑤𝑖+1, 𝑣𝑤 〉.

From Lemma 3.3.16 we know that 𝐾𝑖 is a (𝑤𝑖 , 𝑤𝑖+1)-local random variable and
𝐾𝑖 ≤ 45𝑒𝑛4𝑛 log(1/𝑝) whenever 𝐸𝑤𝑖 ,𝑤𝑖+1 .

Now recall Theorem 3.3.3. Observe that 𝑇 ≤ ∑
𝑖∈[𝑘 ] 𝐾𝑖 almost surely by con-

catenating the above-mentioned paths, and note that ∑𝑖∈[𝑘 ] 𝐾𝑖 ≤ S (𝑃(𝐴),𝑊) holds
almost surely, which implies E[∑𝑖∈[𝑘 ] 𝐾𝑖] = 𝑂 (𝑛2𝑚

1
𝑛−1 ). We apply Lemma 3.3.14

to ∑
𝑖∈[𝑘 ] 𝐾𝑖 and get the desired result. □

Theorem 3.3.5 (Diameter Upper Bound). Let 𝑒
−𝑚

18
√
𝑛(76

√
2)𝑛−1 < 𝑝 < 𝑚−2𝑛. If 𝐴 =

{𝑎1, . . . , 𝑎𝑀 } ∈ S𝑛−1, where 𝑀 is Poisson with E[𝑀] = 𝑚, and 𝑎1, . . . , 𝑎𝑀 are
uniformly and independently distributed in S𝑛−1. Then, we have that

Pr[diam(𝑃(𝐴)) > 𝑂 (𝑛2𝑚
1

𝑛−1 + 𝑛4𝑛 log(1/𝑝)2)] ≤ 𝑂 (√𝑝).

Proof. From Corollary 3.2.7, we know that 𝜀𝑛−1 ≤ 1
76𝑛−1 . As such, the lower bound

on 𝑝 implies that 𝜀(𝑚, 𝑛, 𝑝) < 1/76.
Let 𝑁 ⊆ S𝑛−1 be a fixed minimal 𝜀-net. Consider the following statements:

• For every 𝑛 ∈ 𝑁 , any two vertices in S (𝑃(𝐴), span(𝑒1, 𝑛)) are connected by a
path of length at most 𝑂 (𝑛2𝑚

1
𝑛−1 ) + 𝑡, where 𝑡 is defined in Theorem 3.3.17.

• 𝐴 is 𝜀-dense.

• For any 𝑥 ∈ S𝑛−1 we have |𝐴 ∩ 𝐶 (𝑥, (2 + 2/𝑛)𝜀) | ≤ 45𝑒2𝑛 log(1/𝑝).

For given 𝑛 ∈ 𝑁 , the first event holds with probability at least 1−4𝑝 by Theorem 3.3.17.
The net 𝑁 has |𝑁 | ≤ (4/𝜀)𝑛 points, which is at most 4𝑛 ·𝑚 by Corollary 3.2.7. By the
union bound the first statement holds for all 𝑛 ∈ 𝑁 simultaneously with probability
at least 1 − √𝑝. From Lemma 3.2.6 we know that the second statement holds with
probability at least 1 − 𝑝 and the third statement holds with probability at least 1 − 𝑝.
We conclude that all three statements hold simultaneously with probability at least
1 −𝑂 (√𝑝).

We will show that the above conditions imply the bound on the combinatorial
diameter of 𝑃(𝐴).
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Observe that we only need to show an upper bound for all 𝑤 ∈ S𝑛−1 on the length
of a path connecting any vertex maximizing 〈𝑤, ·〉 to a vertex maximizing 〈𝑒1, ·〉. The
combinatorial diameter of 𝑃(𝐴) is at most twice that upper bound.

Let 𝑤 ∈ S𝑛−1 and pick 𝑛 ∈ 𝑁 such that ‖𝑤 − 𝑛‖ ≤ 𝜀. By the first statement, there
is a path from the vertex maximizing 〈𝑛, ·〉 to the vertex maximizing 〈𝑒1, ·〉 of length
𝑂 (𝑛2𝑚

1
𝑛−1 ) + 𝑡.

By the second two statements, 𝐸𝑤1,𝑤2 is satisfied for every 𝑤1, 𝑤2 ∈ S𝑛−1. We
conclude from Lemma 3.3.16 that there is a path from any vertex maximizing 〈𝑤, ·〉
to the vertex maximizing 〈𝑛, ·〉 of length 45𝑒𝑛4𝑛 log(1/𝑝).

Therefore, when all three statements hold the combinatorial diameter of 𝑃(𝐴) is
at most 𝑂 (𝑛2𝑚

1
𝑛−1 ) + 𝑡𝑝 + 45𝑒𝑛4𝑛 log(1/𝑝) Now we fill in 𝑡𝑝 and obtain an upper

bound of
𝑂 (𝑛2𝑚

1
𝑛−1 + 𝑛4𝑛 log(1/𝑝)2). □

3.4 Lower Bounding the Diameter

To begin, we first reduce to lower bounding the diameter of the polar polytope 𝑃◦,
corresponding to a convex hull of 𝑚 uniform points on S𝑛−1, via the following simple
lemma.

Lemma 3.4.1 (Diameter Relation). For 𝑛 ≥ 2, let 𝑃 ⊆ R𝑛 be a simple bounded
polytope containing the origin in its interior and denote its (simplicial) polar polytope
by𝑄 = 𝑃◦ := {𝑥 ∈ R𝑛 : 〈𝑥, 𝑦〉 ≤ 1,∀𝑦 ∈ 𝑃}. Then, diam(𝑃) ≥ (𝑛−1)(diam(𝑄) −2).

We then associate any “antipodal” path to a continuous curve on the sphere
corresponding to objectives maximized by vertices along the path. From here, we
decompose any such curve into Ω(𝑚 1

𝑛−1 ) segments whose endpoints are at distance
Θ(𝑚−1/(𝑛−1) ) on the sphere. Finally, we apply a suitable union bound, to show that
for any such curve, an Ω(1) fraction of the segments induce at least 1 edge on the
corresponding path.

Theorem 3.4.2 (Lower Bound for 𝑄(𝐴)). There exist positive constants 𝑐2 < 1
and 𝑐3 > 1 independent of 𝑛 ≥ 3 and 𝑚 such that the following holds. Let 𝐴 =
{𝑎1, . . . , 𝑎𝑀 } ∈ S𝑛−1, where 𝑀 is Poisson with E[𝑀] = 𝑚, and 𝑎1, . . . , 𝑎𝑀 are
uniformly and independently distributed in S𝑛−1. Then, with probability at least
1 − 𝑒−𝑐𝑛−1

3 𝑚1/(𝑛−1)
, the combinatorial diameter of 𝑄(𝐴) is at least 𝑐2𝑚

1/(𝑛−1) .
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3.4.1 Relating the diameter of 𝑄(𝐴) and 𝑃(𝐴)

Proof of Lemma 3.4.1. If diam(𝑄) ≤ 1, the statement is trivial, so we may assume
that diam(𝑄) ≥ 2. Let 𝑎1, 𝑎2 ∈ 𝑄 be vertices of 𝑄 at distance diam(𝑄) ≥ 2. Since
𝑃 is bounded, note that ®0 is in the interior of 𝑄 and hence 𝑎1, 𝑎2 ≠ ®0. We must show
that there exists a path from 𝑎1 to 𝑎2 of length 𝐿 ≥ 2 such diam(𝑃) ≥ (𝑛 − 1) (𝐿 − 2).

Let 𝐹𝑖 := {𝑥 ∈ 𝑃 : 〈𝑎𝑖 , 𝑥〉 = 1}, 𝑖 ∈ [2], the corresponding facets of 𝑃. Pick
the two vertices 𝑣1 ∈ 𝐹1, 𝑣2 ∈ 𝐹2 whose distance in 𝑃 is minimized. Let 𝑣1 :=
𝑤0, . . . , 𝑤𝐷 := 𝑣2 be a shortest path from 𝑣1 to 𝑣2 in 𝑃. Here 𝑤0, . . . , 𝑤𝐷 are
all vertices of 𝑃, and [𝑤𝑖 , 𝑤𝑖+1], 0 ≤ 𝑖 ≤ 𝐷 − 1, are edges of 𝑃. By definition,
𝐷 ≤ diam(𝑃).

To complete the proof, we will extract a walk from 𝑎1 to 𝑎2 in 𝑄 from the path
𝑤0, . . . , 𝑤𝐷 of length at most 𝐷/(𝑛 − 1) + 2. Let 𝑄𝑖 := 𝑄 ∩ {𝑥 ∈ R𝑛 : 〈𝑥, 𝑤𝑖〉 = 1},
0 ≤ 𝑖 ≤ 𝐷, denote the facet of 𝑄 induced by 𝑤𝑖 . By our assumption that 𝑃 is
simple, each 𝑄𝑖 , 𝑖 ∈ [𝐷], is a (𝑛 − 1)-dimensional simplex, and hence there exists
𝑆𝑖 ⊆ vertices(𝑄), |𝑆𝑖 | = 𝑛, such that 𝑄𝑖 := conv(𝑎 : 𝑎 ∈ 𝑆𝑖). In particular, the
combinatorial diameter of each 𝑄𝑖 , 0 ≤ 𝑖 ≤ 𝐷, is 1. That is, every distinct pair of
vertices of 𝑄𝑖 induces an edge of 𝑄𝑖 , and hence an edge of 𝑄.

By the above discussion, note that if 𝑎1, 𝑎2 ∈ 𝑆0, then 𝑎1, 𝑎2 are adjacent in
𝑄. Since we assume that the distance between 𝑎1, 𝑎2 is at least 2, we conclude
that 𝑎2 ∉ 𝑆0, and hence that 𝐷 ≥ 1. Furthermore, since we assume that 𝑣1, 𝑣2 are at
minimum distance in 𝑃 subject to 𝑣1 ∈ 𝐹1, 𝑣2 ∈ 𝐹2, we conclude that 𝑎1 ∈ 𝑆0\∪𝐷𝑗=1𝑆 𝑗

and 𝑎2 ∈ 𝑆𝐿 \ ∪𝐷−1
𝑗=0 𝑆 𝑗 , since otherwise we could shortcut the path.

We now define a walk 𝑎1 = 𝑢0, . . . , 𝑢𝐿 = 𝑎2, for some 𝐿 ≥ 2, from 𝑎1 to
𝑎2 in 𝑄 as follows. Letting 𝑙0 = 0 and 𝑆𝐷+1 := ∅, for 𝑖 ≥ 1 inductively define
𝑙𝑖 := max{ 𝑗 ≥ 𝑙𝑖−1 : ∩ 𝑗𝑟=𝑙𝑖−1

𝑆𝑟 ≠ ∅} and let 𝐿 = min{𝑖 ≥ 1 : 𝑙𝑖 = 𝐷} + 1. For
1 ≤ 𝑖 ≤ 𝐿 − 1, choose 𝑢𝑖 from ∩𝑙𝑖𝑟=𝑙𝑖−1

𝑆𝑟 arbitrarily. To relate the length of the walk
to 𝐷, we will need the following claim.

Claim 3.4.3. For any interval 𝐼 ⊆ {0, . . . , 𝐷}, | ⋂
𝑖∈𝐼
𝑆𝑖 | ≥ 𝑛 − |𝐼 | + 1.

Proof. First note that |𝑆 𝑗 ∩ 𝑆 𝑗+1 | = 𝑛 − 1 = |𝑆 𝑗 | − 1 for all 0 ≤ 𝑗 ≤ 𝐷 − 1, since 𝑃
is simple and 𝑆 𝑗 ∩ 𝑆 𝑗+1 indexes the tight constraints of an edge of 𝑃. In particular,
|𝑆 𝑗\𝑆 𝑗+1 | = 1, 0 ≤ 𝑗 ≤ 𝐷−1. Thus, for an interval 𝐼 = {𝑐, 𝑐+1, . . . , 𝑑} ⊆ {0, . . . , 𝐷},
we see that | ∩𝑑𝑖=𝑐 𝑆𝑖 | ≥ | ∩𝑑−1

𝑖=𝑐 𝑆𝑖 | − |𝑆𝑑−1 \ 𝑆𝑑 | = | ∩𝑑−1
𝑖=𝑐 𝑆𝑖 | − 1 ≥ |𝑆𝑐 | − (𝑑 − 𝑐) =

𝑛 + 1 − |𝐼 |. □

Applying the claim to the interval 𝐼 = {𝑙𝑖−1, . . . , 𝑙𝑖 + 1}, 1 ≤ 𝑖 ≤ 𝐿 − 1, we see
that

∩𝑙𝑖+1𝑟=𝑙𝑖−1
𝑆𝑟 = ∅
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implies that either 𝑙𝑖 = 𝐷 or that |𝐼 | ≥ 𝑛 + 1 ⇔ 𝑙𝑖 − 𝑙𝑖−1 ≥ 𝑛 − 1. In particular,
𝑙𝑖 − 𝑙𝑖−1 ≥ 𝑛−1 for 0 ≤ 𝑖 ≤ 𝐿 −2 and 𝑙𝐿−1 − 𝑙𝐿−2 ≥ 1 (since 𝑙𝐿−1 = 𝐷 and 𝑙𝐿−2 < 𝐷).

Let us now verify that 𝑎1 = 𝑢0, 𝑢1, . . . , 𝑢𝐿 = 𝑎2 induces a walk in 𝑄. Here, we
must check that [𝑢𝑖 , 𝑢𝑖+1], 0 ≤ 𝑖 ≤ 𝐿−1, is an edge of𝑄. By construction 𝑢𝑖 , 𝑢𝑖+1 are
both vertices of the simplex 𝑄𝑙𝑖 . Furthermore, 𝑢𝑖 ≠ 𝑢𝑖+1, since either 𝑢𝑖 = 𝑎1 ≠ 𝑢𝑖+1
or 𝑢𝑖+1 = 𝑎2 ≠ 𝑢𝑖 or 𝑢𝑖+1 ∈ 𝑆𝑙𝑖+1 and 𝑢𝑖 ∉ 𝑆𝑙𝑖+1. Thus, [𝑢𝑖 , 𝑢𝑖+1] is indeed an edge
of 𝑄𝑖 and thus of 𝑄, as explained previously. Note by our assumption that 𝑎1 and 𝑎2,
we indeed have 2 ≤ diam(𝑄) ≤ 𝐿.

We can now compare the diameters of 𝑃 and 𝑄 as follows:

diam(𝑃) ≥ 𝐷 = 𝑙𝐿−1 − 𝑙0 =
𝐿−1∑
𝑖=1
(𝑙𝑖 − 𝑙𝑖−1)

≥
𝐿−2∑
𝑖=1
(𝑛 − 1) = (𝑛 − 1) (𝐿 − 2) ≥ (𝑛 − 1)(diam(𝑄) − 2),

as needed. □

3.4.2 Lower Bounding the Diameter of 𝑄(𝐴)

For a discrete set 𝑁 ⊆ 𝑆𝑛−1, a point 𝑥0 ∈ 𝑁 and a positive number 𝜀 > 0 we denote
by

𝑋𝑘 := 𝑋𝑘 (𝑁, 𝑥0, 𝜀)
= {x ∈ 𝑁 𝑘 : 𝑥𝑖 ≠ 𝑥 𝑗 and 6𝜀 ≤ ‖𝑥𝑖 − 𝑥𝑖+1‖ ≤ 8𝜀 for any 0 ≤ 𝑖 < 𝑗 ≤ 𝑘}

the set of all sequences of 𝑘 distinct points in 𝑁 with jumps of length between 6𝜀 and
8𝜀 (including an extra initial jump between 𝑥0 and 𝑥1).

Lemma 3.4.4. Let 𝜀 > 0. If 𝑁 ⊆ 𝑆𝑛−1 is a maximal 𝜀-separated set, then

|𝑋𝑘 | ≤ (17𝑛−1)𝑘

Proof. For any 𝑥 ∈ 𝑁 we find an upper bound for the number of points 𝑦 ∈ 𝑁 such
that 6𝜀 ≤ ‖𝑥 − 𝑦‖ ≤ 8𝜀. Recall that𝐶 (𝑥, 𝑟) denotes the closed spherical cap centered
at 𝑥 with radius 𝑟 > 0. Since 𝑁 is 𝜀-separated, for any different points 𝑦1, 𝑦2 ∈ 𝑁 we
have

int(𝐶 (𝑦1, 𝜀/2)) ∩ 𝐶 (𝑦2, 𝜀/2) = ∅.

Taking a union of spherical caps centered at all points inside the annulus, we obtain
a subset of the inflated annulus

𝐶 (𝑥, 17𝜀/2) \ int(𝐶 (𝑥, 11𝜀/2)).
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Since the caps 𝐶 (𝑦, 𝜀/2), 𝑦 ∈ 𝑁 , have pairwise disjoint interiors, the volume of their
union is the sum of the volumes. Hence, the maximal number of points in the annulus
is bounded by

𝜎(𝐶 (𝑥, 17𝜀/2)) − 𝜎(𝐶 (𝑥, 11𝜀/2))
𝜎(𝐶 (𝑥, 𝜀/2)) ≤ 𝜎(𝐶 (𝑥, 17𝜀/2))

𝜎(𝐶 (𝑥, 𝜀/2)) .

Using Lemma 3.2.2 we have

|{𝑦 ∈ 𝑁 : 6𝜀 ≤ ‖𝑥 − 𝑦‖ ≤ 8𝜀}| ≤ (17/2)𝑛−1

(1/2)𝑛−1 = 17𝑛−1.

Thus, the overall number of paths in 𝑋𝑘 is bounded by

|𝑋𝑘 | ≤ 17𝑘 (𝑛−1) . □

Lemma 3.4.5. Let 𝑓 : [0, 1] → 𝑆𝑛−1 be a continuous function. Let 𝜀 > 0 and
𝑁 ⊆ 𝑆𝑛−1 be a minimal 𝜀-net, such that 𝑓 (0) ∈ 𝑁 . There exist 𝑘 ∈ N0, 0 ≤ 𝑡0 < 𝑡1 <
· · · < 𝑡𝑘 ≤ 1 and 𝑥0, . . . , 𝑥𝑘 ∈ 𝑁 such that

1. ‖ 𝑓 (𝑡𝑖) − 𝑥𝑖 ‖ ≤ 𝜀 for any 𝑖 ∈ {0, . . . , 𝑘},

2. ‖ 𝑓 (𝑡) − 𝑥𝑖 ‖ ≥ 𝜀 for any 𝑖 ∈ {0, . . . , 𝑘} and 𝑡 > 𝑡𝑖 ,

3. (𝑥1, . . . , 𝑥𝑘) ∈ 𝑋𝑘 (𝑁, 𝑥0, 𝜀),

4. ‖𝑥𝑘 − 𝑓 (1)‖ < 7𝜀.

Proof. We build the desired couple of sequences (𝑥𝑖) and (𝑡𝑖) by induction. We start
by taking 𝑥0 = 𝑓 (0) and

𝑡0 = sup{𝑡 ≥ 0 : ‖ 𝑓 (𝑡) − 𝑥0‖ ≤ 𝜀}.

Note that with these choices, we have a couple of (very short) sequences for which
1-3 are fulfilled.

Assume that 𝑥0, . . . , 𝑥ℓ and 0 ≤ 𝑡0 < . . . < 𝑡ℓ ≤ 1 are sequences for which 1-3
hold true.

If ‖𝑥ℓ − 𝑓 (1)‖ < 7𝜀 then we may take 𝑘 = ℓ, and we are done.
Assume otherwise, and define

𝑡 ′ = min{𝑡 ∈ [𝑡ℓ , 1] : ∃𝑥ℓ+1 ∈ 𝑁 with ‖ 𝑓 (𝑡) − 𝑥ℓ+1‖ ≤ 𝜀 and ‖𝑥ℓ+1 − 𝑥ℓ ‖ ≥ 6𝜀},

Since 4 is not fulfilled, the set is non-empty (it contains 1) and 𝑡 ′ is well defined. We
take 𝑥ℓ+1 as it appears in the definition of 𝑡 ′. Set

𝑡ℓ+1 = sup{𝑡 ∈ [0, 1] : ‖ 𝑓 (𝑡) − 𝑥ℓ+1‖ ≤ 𝜀}.
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By 2, for any 𝑖 ≤ ℓ
‖ 𝑓 (𝑡ℓ+1) − 𝑥𝑖 ‖ > 𝜀,

hence 𝑥𝑖 ≠ 𝑥ℓ+1. Combining this with the definition of 𝑡ℓ+1 and 𝑥ℓ+1 we only need to
show that ‖𝑥ℓ − 𝑥ℓ+1‖ ≤ 8𝜀 in order to get that 0 ≤ 𝑡0 < . . . < 𝑡ℓ < 𝑡ℓ+1 ≤ 1 and
𝑥0, . . . , 𝑥ℓ+1 fulfill 1-3.

By the minimality of 𝑡 ′, for any 𝑠 ∈ (𝑡ℓ , 𝑡 ′) we have ‖𝑥ℓ − 𝑓 (𝑠)‖ ≤ 7𝜀, otherwise
there would be 𝑥 ′ ∈ 𝑁 such that ‖𝑥 ′ − 𝑓 (𝑠)‖ ≤ 𝜀 but ‖𝑥ℓ − 𝑥 ′‖ ≥ 6𝜀, hence 𝑡 ′ ≤ 𝑠 in
contradiction to the definition of 𝑠. Hence

‖𝑥ℓ −𝑥ℓ+1‖ ≤ ‖𝑥ℓ − 𝑓 (𝑠)‖ + ‖ 𝑓 (𝑠) − 𝑓 (𝑡 ′)‖ + ‖ 𝑓 (𝑡 ′) −𝑥ℓ+1‖ ≤ 7𝜀+ ‖ 𝑓 (𝑠) − 𝑓 (𝑡 ′)‖ +𝜀.

This holds for all 𝑠 ∈ (𝑡ℓ , 𝑡 ′). By continuity of 𝑓 we may take 𝑠 ↗ 𝑡 ′ and have
‖ 𝑓 (𝑠) − 𝑓 (𝑡 ′)‖ → 0. Thus ‖𝑥ℓ − 𝑥ℓ+1‖ ≤ 8𝜀.

Since 𝑁 is finite and the points 𝑥0, . . . , 𝑥ℓ are distinct the process must end after
at most after |𝑁 | steps. □

Lemma 3.4.6. Let 𝐴 ⊆ 𝑆𝑛−1 be a finite subset of the sphere. Let [𝑎0, 𝑎1], [𝑎1, 𝑎2],
. . . , [𝑎ℓ−1, 𝑎ℓ] be a path along the edges of𝑄(𝐴). There exists a continuous function
𝑓 : [0, 1] → 𝑆𝑛−1 and 0 = 𝑠0 < 𝑠1 < · · · < 𝑠ℓ+1 = 1 such that 𝑓 (0) = 𝑎0, 𝑓 (1) = 𝑎ℓ ,
and for any 𝑖 ∈ {0, 1, . . . , ℓ} and any 𝑡 ∈ [𝑠𝑖 , 𝑠𝑖+1],

𝑎𝑖 ∈ arg min𝑎∈𝐴(‖ 𝑓 (𝑡) − 𝑎‖).

Proof. First we consider the case where the path consist of a single edge, i.e. ℓ = 1.
Consider a point 𝑥 ∈ 𝑆𝑛−1 and a real 𝑟 > 0 such that the cap 𝐶 (𝑥, 𝑟) contains 𝑎0 and
𝑎1 on its boundary and no point of 𝐴 in its interior. A possible choice is given by the
circumscribed cap of any facet of 𝑄(𝐴) which contains [𝑎0, 𝑎1] as an edge. Now we
set 𝑓 such that it interpolates 𝑎0, 𝑥 and 𝑎1 by two geodesic segments,

𝑓 (𝑡) = 𝑓 (𝑡)
‖ 𝑓 (𝑡)‖

, 𝑓 (𝑡) =
{
(1 − 2𝑡)𝑎0 + 2𝑡𝑥, 𝑡 ∈ [0, 1

2 ],
(2 − 2𝑡)𝑥 + (2𝑡 − 1)𝑎1, 𝑡 ∈ [ 12 , 1] .

By construction, for any 𝑡 ∈ [0, 1
2 ] (resp. 𝑡 ∈ [ 12 , 1]), the cap 𝐶 ( 𝑓 (𝑡), ‖ 𝑓 (𝑡) − 𝑎0‖)

(resp. 𝐶 ( 𝑓 (𝑡), ‖ 𝑓 (𝑡) − 𝑎1‖)) is a subset of 𝐶 (𝑥, 𝑟). Thus it contains 𝑎0 (resp. 𝑎1) on
its boundary and no point of 𝐴 in its interior. This implies that 𝑓 (0) = 𝑎0, 𝑓 (1) = 𝑎1,
and

𝑎0 ∈ arg min𝑎∈𝐴(‖ 𝑓 (𝑡) − 𝑎‖), 𝑡 ∈ [0, 1
2
],

𝑎1 ∈ arg min𝑎∈𝐴(‖ 𝑓 (𝑡) − 𝑎‖), 𝑡 ∈ [1
2
, 1] .
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This yields the proof in the case ℓ = 1 (with 𝑠0 = 0 < 𝑠1 = 1
2 < 𝑠1+1 = 1). The general

case follows by concatenating and renormalizing the functions corresponding to each
edge. □

Lemma 3.4.7. Let 𝐴 ⊆ S𝑛−1 be a finite subset of the sphere, containing two points
𝑎+, 𝑎− ∈ 𝐴 such that ‖𝑎+ − 𝑎−‖ ≥ 1. Let 𝜀 > 0 and 𝑁 be a minimal 𝜀-net, such that
𝑎+ ∈ 𝑁 . Set 𝑥0 = 𝑎+ and 𝑘0 = d1/8𝜀e − 1. It holds that

diam(𝑄(𝐴)) ≥ min
𝑘≥𝑘0

x∈𝑋𝑘 (𝑁 ,𝑥0, 𝜀)

∑
0≤𝑖≤𝑘−1

1[𝐶 (𝑥𝑖 , 𝜀/2) ∩ 𝐴 ≠ ∅]1[𝐶 (𝑥𝑖+1, 𝜀/2) ∩ 𝐴 ≠ ∅] .

Proof. The diameter of 𝑄(𝐴) is at least the combinatorial distance between 𝑎+ and
𝑎−, i.e., the minimal number of edges required to form a path between these two
vertices. Note that this minimum is realized for a path without loops. Let [𝑎0, 𝑎1],
[𝑎1, 𝑎2], . . . , [𝑎ℓ−1, 𝑎ℓ] be such a path. Here we denote 𝑎0 = 𝑎+ = 𝑥0 and 𝑎ℓ = 𝑎−.

Consider a function 𝑓 and a sequence 0 = 𝑠0 < 𝑠1 < · · · < 𝑠ℓ+1 = 1 as in
Lemma 3.4.6, and consider 𝑘 ∈ N0, 0 ≤ 𝑡0 < 𝑡1 < · · · < 𝑡𝑘 ≤ 1 and 𝑥0, . . . , 𝑥𝑘 ∈ 𝑁
as in Lemma 3.4.5. We set 𝑗 (0) ≤ 𝑗 (1) ≤ · · · ≤ 𝑗 (𝑘) such that 𝑡𝑖 ∈ [𝑠 𝑗 (𝑖) , 𝑠 𝑗 (𝑖)+1].
In particular, with this notation set up we have

‖𝑥𝑖 − 𝑥𝑖+1‖ ≥ 6𝜀, 𝑖 ∈ {0, . . . , 𝑘 − 1}, (3.4)
‖𝑎 𝑗 (𝑖) − 𝑓 (𝑡𝑖)‖ = min

𝑎∈𝐴
‖𝑎 − 𝑓 (𝑡𝑖)‖, 𝑖 ∈ {0, . . . , 𝑘}, (3.5)

and

‖𝑥𝑖 − 𝑓 (𝑡𝑖)‖ ≤ 𝜀, 𝑖 ∈ {0, . . . , 𝑘}. (3.6)

From (3.6) we get 𝐶 ( 𝑓 (𝑡𝑖), 3𝜀/2) ⊃ 𝐶 (𝑥𝑖 , 𝜀/2). Hence, if 𝐶 (𝑥𝑖 , 𝜀/2) ∩ 𝐴 ≠ ∅,
we have that ‖𝑎 𝑗 (𝑖) − 𝑓 (𝑡𝑖)‖ ≤ 3𝜀/2 because of (3.5). Therefore if, for some
𝑖 ∈ {0, . . . , 𝑘 − 1}, both caps 𝐶 (𝑥𝑖 , 𝜀/2) and 𝐶 (𝑥𝑖+1, 𝜀/2) contain points of 𝐴, then

‖𝑎 𝑗 (𝑖) − 𝑎 𝑗 (𝑖+1) ‖ ≥ ‖𝑥𝑖 − 𝑥𝑖+1‖ − ‖𝑥𝑖 − 𝑓 (𝑡𝑖)‖ − ‖ 𝑓 (𝑡𝑖) − 𝑎 𝑗 (𝑖) ‖
− ‖𝑎 𝑗 (𝑖+1) − 𝑓 (𝑡𝑖+1)‖ − ‖ 𝑓 (𝑡𝑖+1) − 𝑥𝑖+1‖

≥ 6𝜀 − 𝜀 − 3𝜀/2 − 3𝜀/2 − 𝜀 = 𝜀 > 0

and we get 𝑎 𝑗 (𝑖+1) ≠ 𝑎 𝑗 (𝑖) which implies that 𝑗 (𝑖) < 𝑗 (𝑖′) for any 𝑖′ > 𝑖. This shows
that if

𝑖, 𝑖′ ∈ 𝐼 = {𝑖 : 𝐶 (𝑥𝑖 , 𝜀/2) ∩ 𝐴 ≠ ∅ and 𝐶 (𝑥𝑖+1, 𝜀/2) ∩ 𝐴 ≠ ∅} ⊆ {0, 1, . . . , 𝑘 − 1},

with 𝑖 ≠ 𝑖′, then 𝑎 𝑗 (𝑖) and 𝑎 𝑗 (𝑖′) are distinct vertices of the path. Therefore

ℓ ≥ |𝐼 | =
∑

0≤𝑖≤𝑘−1
1[𝐶 (𝑥𝑖 , 𝜀/2) ∩ 𝐴 ≠ ∅]1[𝐶 (𝑥𝑖+1, 𝜀/2) ∩ 𝐴 ≠ ∅] .
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Also, we note that from

‖𝑎+ − 𝑎−‖ ≤ ‖𝑎+ − 𝑥0‖ +
∑

1≤𝑖≤𝑘
‖𝑥𝑖 − 𝑥𝑖−1‖ + ‖𝑥𝑘 − 𝑎−‖

< 𝜀 + 𝑘 × 8𝜀 + 7𝜀 = 8(𝑘 + 1)𝜀

we have 𝑘 ≥ 𝑘0, and therefore

(𝑥0, . . . , 𝑥𝑘) ∈ ∪𝑘≥𝑘0𝑋𝑘 (𝑁, 𝑥0, 𝜀). □

Theorem 3.4.2 (Lower Bound for 𝑄(𝐴)). There exist positive constants 𝑐2 < 1
and 𝑐3 > 1 independent of 𝑛 ≥ 3 and 𝑚 such that the following holds. Let 𝐴 =
{𝑎1, . . . , 𝑎𝑀 } ∈ S𝑛−1, where 𝑀 is Poisson with E[𝑀] = 𝑚, and 𝑎1, . . . , 𝑎𝑀 are
uniformly and independently distributed in S𝑛−1. Then, with probability at least
1 − 𝑒−𝑐𝑛−1

3 𝑚1/(𝑛−1)
, the combinatorial diameter of 𝑄(𝐴) is at least 𝑐2𝑚

1/(𝑛−1) .

Proof. Without loss of generality 𝑚 ≥ (1/𝑐2)𝑛−1 since otherwise the statement of
the theorem is trivial.

In this proof the constants 1 < 𝑐3 < 𝑐4 < 𝑐5 < 𝑐6 < 𝑐−1
2 are large enough

constants, independent from 𝑛 and 𝑚.
We set 𝜀 = 𝑐6𝑚

−1/(𝑛−1) , and want to apply Lemma 3.4.7. Let 𝑁 be an 𝜀-net,
obtained from a maximal 𝜀-separated set, such that it contains a point 𝑎+ from the
set 𝐴. For independence properties needed later we take 𝑎+ randomly and uniformly
from the set 𝐴. With probability 1 − 𝑒−𝑚/2 we have that 𝐴 intersects the halfsphere
{𝑢 ∈ S𝑛−1 : 〈𝑎+, 𝑢〉 ≤ 0}. In which case there exists a point 𝑎− ∈ 𝐴 such that
‖𝑎+ − 𝑎−‖ ≥

√
2 ≥ 1. Therefore we can apply Lemma 3.4.7 with 𝑥0 = 𝑎+. Combined

with the union bound, we get

Pr
(
diam(𝑄(𝐴)) ≤ 𝑐2𝑚

1/(𝑛−1)
)
≤ 𝑒−𝑚/2 +

∑
𝑘≥𝑘0

x∈𝑋𝑘 (𝑁 ,𝑥0, 𝜀)

Pr

( ∑
0≤𝑖≤𝑘−1

𝐵𝑖 ≤ 𝑐2𝑚
1/(𝑛−1)

)
,

where
𝑘0 = d1/8𝜀e + 1 ≥ 1/8𝜀 = 𝑚1/(𝑛−1)/8𝑐6,

and the summands in the probability are Bernoulli random variables

𝐵𝑖 = 1[𝐶 (𝑥𝑖 , 𝜀/2) ∩ 𝐴 ≠ ∅]1[𝐶 (𝑥𝑖+1, 𝜀/2) ∩ 𝐴 ≠ ∅] .

For 1 ≤ 𝑖 ≤ 𝑘 − 1, they are identically distributed, with failure probability

Pr(𝐵𝑖 = 0) ≤ 2 Pr(𝐶 (𝑥𝑖 , 𝜀/2) ∩ 𝐴 = 0) = 2 exp (−𝑚𝜎(𝐶 (𝑥𝑖 , 𝜀/2)))

≤ 2 exp
(
−𝑚 (𝜀/4)𝑛−1

)
= 2 exp

(
−

( 𝑐6

4

)𝑛−1
)
=: 1 − 𝑝.



3.4. Lower Bounding the Diameter 111

In the above, note that we used Lemma 3.2.2 to lower bound the volume of the cap
𝜎(𝐶 (𝑥𝑖 , 𝜀/2)) ≥ (𝜀/4)𝑛−1𝜎(𝐶 (𝑥𝑖 , 2)). Since 𝑁 forms a maximal 𝜀-separated set and
the 𝑥𝑖 are distinct, the caps 𝐶 (𝑥𝑖 , 𝜀/2) are disjoint and therefore the random variables
𝐵1, 𝐵3, 𝐵5, ... are independent. Next we exploit this independence. Let 𝑘 ≥ 𝑘0, and
set 𝐾 = b𝑘/2c. Note that 𝐾 ≥ 1/16𝜀 = 𝑚1/(𝑛−1)/16𝑐6. Assuming that 𝑐2 ≤ 1/32𝑐6,
we have

Pr

( ∑
0≤𝑖≤𝑘−1

𝐵𝑖 ≤ 𝑐2𝑚
1/(𝑛−1)

)
≤ Pr

( ∑
1≤𝑖≤𝐾

𝐵2𝑖−1 ≤
𝐾

2

)
=

∑
1≤𝑖≤b𝐾/2c

(
𝐾

𝑖

)
𝑝𝑖 (1 − 𝑝)𝐾−𝑖 .

Now we bound 𝑝 by 1, (1 − 𝑝)𝐾−𝑖 by (1 − 𝑝)𝐾/2 and ∑ (𝐾
𝑖

)
by 2𝐾 , which provides

us the bound

Pr

( ∑
0≤𝑖≤𝑘−1

𝐵𝑖 ≤ 𝑐2𝑚
−1/(𝑛−1)

)
≤ (2(1 − 𝑝)1/2)𝐾

=

(
𝑒

(
− 1

2 ( 𝑐6
4 )

𝑛−1+ 3
2 ln 2

) )𝐾
≤

(
𝑒(−𝑐𝑛−1

5 )
)𝐾
.

Thus, with the bound |𝑋𝑘 | ≤ (17𝑛−1)𝑘 from Lemma 3.4.4, and the fact that 𝐾 ≥ 𝑘/2,
we get

Pr
(
diam(𝑄(𝐴)) ≤ 𝑐2𝑚

−1/(𝑛−1)
)
≤ 𝑒−𝑚/2 +

∑
𝑘≥𝑘0

(
𝑒(− 1

2 (𝑐5)𝑛−1+(𝑛−1) ln 17)
) 𝑘

≤ 𝑒−𝑚/2 +
∑
𝑘≥𝑘0

(𝑒−(𝑐4)𝑛−1)𝑘

= 𝑒−𝑚/2 + 𝑒−𝑘0𝑐
𝑛−1
4

1 − 𝑒−(𝑐4)𝑛−1

≤ 𝑒−𝑚/2 + 𝑒
−𝑚1/(𝑛−1)

8𝑐6
𝑐𝑛−1

4

1 − 𝑒−𝑐𝑛−1
4

≤ 𝑒−𝑐𝑛−1
3 𝑚1/(𝑛−1)

. □
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Chapter 4

A Scaling-Invariant Algorithm for Linear Programming
whose Running Time Depends Only on the
Constraint Matrix

Following the breakthrough work of Tardos [183] in the bit-complexity model, Vavasis
and Ye [198] gave the first exact algorithm for linear programming in the real model of
computation with running time depending only on the constraint matrix. For solving
a linear program max 𝑐T𝑥, 𝐴𝑥 = 𝑏, 𝑥 ≥ ®0, 𝐴 ∈ R𝑚×𝑛, Vavasis and Ye developed
a primal-dual interior point method using a ‘layered least squares’ (LLS) step, and
showed that 𝑂 (𝑛3.5 log( �̄�𝐴 + 𝑛)) iterations suffice to solve the LP exactly, where �̄�𝐴
is a condition measure controlling the size of solutions to linear systems related to 𝐴.

Monteiro and Tsuchiya [146], noting that the central path is invariant under
rescalings of the columns of 𝐴 and 𝑐, asked whether there exists an LP algorithm
depending instead on the measure �̄�∗𝐴, defined as the minimum �̄�𝐴𝐷 value achievable
by a column rescaling 𝐴𝐷 of 𝐴, and gave strong evidence that this should be the case.
We resolve this open question affirmatively.

Our first main contribution is an 𝑂 (𝑚2𝑛2 + 𝑛3) time algorithm which works on
the linear matroid of 𝐴 to compute a nearly optimal diagonal rescaling 𝐷 satisfying
�̄�𝐴𝐷 ≤ 𝑛( �̄�∗𝐴)3. This algorithm also allows us to approximate the value of �̄�𝐴 up
to a factor 𝑛( �̄�∗𝐴)2. This result is in (surprising) contrast to that of Tunçel [188],
who showed NP-hardness for approximating �̄�𝐴 to within 2poly(rank(𝐴)) . The key
insight for our algorithm is to work with ratios 𝑔𝑖/𝑔 𝑗 of circuits of 𝐴 — i.e., minimal
linear dependencies 𝐴𝑔 = ®0 — which allow us to approximate the value of �̄�∗𝐴 by
a maximum geometric mean cycle computation in what we call the ‘circuit ratio
digraph’ of 𝐴.

While this resolves Monteiro and Tsuchiya’s question by appropriate preprocess-
ing, it falls short of providing either a truly scaling invariant algorithm or an improve-
ment upon the base LLS analysis. In this vein, as our second main contribution we
develop a scaling invariant LLS algorithm, which uses and dynamically maintains
improving estimates of the circuit ratio digraph, together with a refined potential
function based analysis for LLS algorithms in general. With this analysis, we derive

This chapter is based on [52], a joint work with Daniel Dadush, Bento Natura, and László A Végh.
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an improved 𝑂 (𝑛2.5 log 𝑛 log( �̄�∗𝐴 + 𝑛)) iteration bound for optimally solving the LP
using our algorithm. The same argument also yields a factor 𝑛/log 𝑛 improvement
on the iteration complexity bound of the original Vavasis-Ye algorithm.

4.1 Introduction

The linear programming problem in primal-dual form is to solve

min 𝑐T𝑥

𝐴𝑥 = 𝑏

𝑥 ≥ ®0,

max 𝑦T𝑏

𝐴T𝑦 + 𝑠 = 𝑐
𝑠 ≥ ®0,

(4.1)

where 𝐴 ∈ R𝑚×𝑛, rank(𝐴) = 𝑚 ≤ 𝑛, 𝑏 ∈ R𝑚, 𝑐 ∈ R𝑛 are given in the input, and
𝑥, 𝑠 ∈ R𝑛, 𝑦 ∈ R𝑚 are the variables. We consider the program in 𝑥 to be the primal
problem and the program in (𝑦, 𝑠) to be the dual problem.

Khachiyan [122] used the ellipsoid method to give the first polynomial time LP
algorithm in the bit-complexity model, that is, polynomial in the bit description length
of (𝐴, 𝑏, 𝑐). An outstanding open question is the existence of a strongly polynomial
algorithm for LP, listed by Smale as one of the most prominent mathematical chal-
lenges for the 21st century [174]. Such an algorithm amounts to solving LP using
poly(𝑛, 𝑚) basic arithmetic operations in the real model of computation.1 Known
strongly polynomially solvable LP problems classes include: feasibility for two vari-
able per inequality systems [139], the minimum-cost circulation problem [182], the
maximum generalized flow problem [155, 199], and discounted Markov decision
problems [203,205].

Towards this goal, the principal line of attack has been to develop LP algorithms
whose running time is bounded in terms of natural condition measures. Such con-
dition measures attempt to finely measure the “intrinsic complexity” of the LP. An
important line of work in this area has been to parametrize LPs by the “niceness”
of their solutions (e.g. the depth of the most interior point), where relevant exam-
ples include the Goffin measure [91] for conic systems and Renegar’s distance to
ill-posedness for general LPs [161, 162], and bounded ratios between the nonzero
entries in basic feasible solutions [43, 123].

Parametrizing by the constraint matrix A second line of research, and the main
focus of this chapter, focuses on the complexity of the constraint matrix 𝐴. The first

1In the bit-complexity model, a further requirement is that the algorithm must be in PSPACE.
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breakthrough in this area was given by Tardos [183], who showed that if 𝐴 has integer
entries and all square submatrices of 𝐴 have determinant at most Δ in absolute value,
then (4.1) can be solved in poly(𝑛, 𝑚, logΔ) arithmetic operations, independent of
the encoding length of the vectors 𝑏 and 𝑐. This is achieved by finding the exact
solutions to 𝑂 (𝑛𝑚) rounded LPs derived from the original LP, with the right hand
side vector and cost function being integers of absolute value bounded in terms of
𝑛 and Δ. From 𝑚 such rounded problem instances, one can infer, via proximity
results, that a constraint 𝑥𝑖 = 0 must be valid for every optimal solution. The process
continues by induction until the optimal primal face is identified.

Path-following methods and the Vavasis–Ye algorithm In a seminal work, Vava-
sis and Ye [198] introduced a new type of interior-point method that optimally solves
(4.1) within 𝑂 (𝑛3.5 log( �̄�𝐴 + 𝑛)) iterations, where the condition number �̄�𝐴 controls
the size of solutions to certain linear systems related to the kernel of 𝐴 (see Section 4.2
for the formal definition).

Before detailing the Vavasis–Ye (henceforth VY) algorithm, we recall the basics
of path following interior-point methods. If both the primal and dual problems in (4.1)
are strictly feasible, the central path for (4.1) is the curve ((𝑥(𝜇), 𝑦(𝜇), 𝑠(𝜇)) : 𝜇 > 0)
defined by

𝑥(𝜇)𝑖𝑠(𝜇)𝑖 = 𝜇, ∀𝑖 ∈ [𝑛]
𝐴𝑥(𝜇) = 𝑏, 𝑥(𝜇) > ®0,

𝐴T𝑦(𝜇) + 𝑠(𝜇) = 𝑐, 𝑠(𝜇) > ®0,
(CP)

which converges to complementary optimal primal and dual solutions (𝑥∗, 𝑦∗, 𝑠∗)
as 𝜇 → 0, recalling that the optimality gap at time 𝜇 is exactly 𝑥(𝜇)T𝑠(𝜇) = 𝑛𝜇.
We thus refer to 𝜇 as the normalized duality gap. Methods that “follow the path”
generate iterates that stay in a certain neighborhood around it while trying to achieve
rapid multiplicative progress w.r.t. to 𝜇, where given (𝑥, 𝑦, 𝑠) ‘close’ to the path, we
define the effective 𝜇 as 𝜇(𝑥, 𝑦, 𝑠) = ∑𝑛

𝑖=1 𝑥𝑖𝑠𝑖/𝑛. Given a target parameter 𝜇′ and
starting point close to the path at parameter 𝜇, standard path following methods [100]
can compute a point at parameter below 𝜇′ in at most 𝑂 (√𝑛 log(𝜇/𝜇′)) iterations,
and hence the quantity log(𝜇/𝜇′) can be usefully interpreted as the length of the
corresponding segment of the central path.

Crossover events and layered least squares steps At a very high level, Vavasis
and Ye show that the central path can be decomposed into at most

(𝑛
2
)

short but curved
segments, possibly joined by long (apriori unbounded) but very straight segments.
At the end of each curved segment, they show that a new ordering relation 𝑥𝑖 (𝜇) >
𝑥 𝑗 (𝜇)—called a ‘crossover event’—is implicitly learned, where this relation did not
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hold at the start of the segment, but will hold at every point from the end of the
segment onwards. These

(𝑛
2
)

relations give a combinatorial way to measure progress
along the central path. In contrast to Tardos’s algorithm, where the main progress
is setting variables to zero explicitly, the variables participating in crossover events
cannot be identified, only their existence is shown.

At a technical level, the VY-algorithm is a variant of the Mizuno–Todd–Ye [145]
predictor-corrector method (MTY P-C). In predictor-corrector methods, corrector
steps bring an iterate closer to the path, i.e., improve centrality, and predictor steps
“shoot down” the path, i.e., reduce 𝜇 without losing too much centrality. Vavasis
and Ye’s main algorithmic innovation was the introduction of a new predictor step,
called the ‘layered least squares’ (LLS) step, which crucially allowed them to cross
each aforementioned “straight” segment of the central path in a single step, recalling
that these straight segments may be arbitrarily long. To traverse the short and curved
segments of the path, the standard predictor step, known as affine scaling (AS), in
fact suffices.

To compute the LLS direction, the variables are decomposed into ‘layers’ 𝐽1∪𝐽2∪
. . .∪𝐽𝑝 = [𝑛]. The goal of such a decomposition is to eventually learn a refinement of
the optimal partition of the variables 𝐵∗ ∪ 𝑁∗ = [𝑛], where 𝐵∗ := {𝑖 ∈ [𝑛] : 𝑥∗𝑖 > 0}
and 𝑁∗ := {𝑖 ∈ [𝑛] : 𝑠∗𝑖 > 0} for the limit optimal solution (𝑥∗, 𝑦∗, 𝑠∗).

The primal affine scaling direction can be equivalently described by solving
a weighted least squares problem in Ker(𝐴), with respect to a weighting defined
according to the current iterate. The primal LLS direction is obtained by solving a
series of weighted least squares problems, starting with focusing only on the final layer
𝐽𝑝. This solution is gradually extended to the higher layers (i.e., layers with lower
indices). The dual directions have analogous interpretations, with the solutions on
the layers obtained in the opposite direction, starting with 𝐽1. If we use the two-level
layering 𝐽1 = 𝐵∗, 𝐽2 = 𝑁∗, and are sufficiently close to the limit (𝑥∗, 𝑦∗, 𝑠∗) of the
central path, then the LLS step reaches an exact optimal solution in a single step. We
note that standard AS steps generically never find an exact optimal solution, and thus
some form of “LLS rounding” in the final iteration is always necessary to achieve
finite termination with an exact optimal solution.

Of course, guessing 𝐵∗ and 𝑁∗ correctly is just as hard as solving (4.1). Still,
if we work with a “good” layerings, these will reveal new information about the
“optimal order” of the variables, where 𝐵∗ is placed on higher layers than 𝑁∗. The
crossover events correspond to swapping two wrongly ordered variables into the
correct ordering. Namely, a variable 𝑖 ∈ 𝐵∗ and 𝑗 ∈ 𝑁∗ are currently ordered on the
same layer, or 𝑗 is in a higher layer than 𝑖. After the crossover event, 𝑖 will always be
placed on a higher layer than 𝑗 .
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Computing good layerings and the �̄�𝐴 condition measure Given the above discus-
sion, the obvious question is how to come up with “good” layerings? The philosophy
behind LLS can be stated as saying that if modifying a set of variables 𝑥𝐼 barely affects
the variables in 𝑥 [𝑛]\𝐼 (recalling that movement is constrained to Δ𝑥 ∈ Ker(𝐴)), then
one should optimize over 𝑥𝐼 without regard to the effect on 𝑥 [𝑛]\𝐼 ; hence 𝑥𝐼 should
be placed on lower layers.

VY’s strategy for computing such layerings was to directly use the size of the
coordinates of the current iterate 𝑥 (where (𝑥, 𝑦, 𝑠) is a point near the central path).
In particular, assuming 𝑥1 ≥ 𝑥2 ≥ . . . ≥ 𝑥𝑛, the layering 𝐽1 ∪ 𝐽2 ∪ . . . ∪ 𝐽𝑝 = [𝑛]
corresponds to consecutive intervals constructed in decreasing order of 𝑥𝑖 values. The
break between 𝐽𝑖 and 𝐽𝑖+1 occurs if the gap 𝑥𝑟/𝑥𝑟+1 > 𝑔, where 𝑟 is the rightmost
element of 𝐽𝑖 and 𝑔 > 0 is a threshold parameter. Thus, the expectation is that if
𝑥𝑖 > 𝑔𝑥 𝑗 , then a small multiplicative change to 𝑥 𝑗 , subject to moving in Ker(𝐴),
should induce a small multiplicative change to 𝑥𝑖 . By proximity to the central path,
the dual ordering is reversed as mentioned above.

The threshold 𝑔 for which this was justified in VY was a function of the �̄�𝐴
condition measure. We now provide a convenient definition, which immediately
yields this justification (see Proposition 4.2.4). Letting 𝑊 = Ker(𝐴) and 𝜋𝐼 (𝑊) =
{𝑥𝐼 : 𝑥 ∈ 𝑊}, we define �̄�𝐴 := �̄�𝑊 as the minimum number 𝑀 ≥ 1 such that for
any ∅ ≠ 𝐼 ⊆ [𝑛] and 𝑧 ∈ 𝜋𝐼 (𝑊), there exists 𝑦 ∈ 𝑊 with 𝑦𝐼 = 𝑧 and ‖𝑦‖ ≤ 𝑀 ‖𝑧‖.
Thus, a change of 𝜀 in variables in 𝐼 can be lifted to a change of at most �̄�𝐴𝜀 in
variables in [𝑛] \ 𝐼. Crucially, �̄� is a “self-dual” quantity. That is, �̄�𝑊 = �̄�𝑊 ⊥ ,
where 𝑊⊥ = range(𝐴T) is the movement subspace for the dual problem, justifying
the reversed layering for the dual (see Section 4.2 for more details).

The question of scale invariance and �̄�∗𝐴 While the VY layering procedure is
powerful, its properties are somewhat mismatched with those of the central path. In
particular, variable ordering information has no intrinsic meaning on the central path,
as the path itself is scaling invariant. Namely, the central path point (𝑥(𝜇), 𝑦(𝜇), 𝑠(𝜇))
w.r.t. the problem instance (𝐴, 𝑏, 𝑐) is in bijective correspondence with the central
path point (𝐷−1𝑥(𝜇), 𝐷𝑦(𝜇), 𝐷𝑠(𝜇))) w.r.t. the problem instance (𝐴𝐷, 𝐷𝑐, 𝑏) for
any positive diagonal matrix 𝐷. The standard path following algorithms are also
scaling invariant in this sense.

This lead Monteiro and Tsuchiya [146] to ask whether a scaling invariant LLS
algorithm exists. They noted that any such algorithm would then depend on the
potentially much smaller parameter

�̄�∗𝐴 := inf
𝐷
�̄�𝐴𝐷 , (4.2)

where the infimum is taken over the set of 𝑛 × 𝑛 positive diagonal matrices. Thus,
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Monteiro and Tsuchiya’s question can be rephrased as to whether there exists an exact
LP algorithm with running time poly(𝑛, 𝑚, log �̄�∗𝐴).

Substantial progress on this question was made in the followup works [129,147].
The paper [147] showed that the number of iterations of the MTY predictor-corrector
algorithm [145] can get from 𝜇0 > 0 to 𝜂 > 0 on the central path in

𝑂
(
𝑛3.5 log �̄�∗𝐴 +min{𝑛2 log log(𝜇0/𝜂), log(𝜇0/𝜂)}

)
iterations. This is attained by showing that the standard AS steps are reasonably
close to the LLS steps. This proximity can be used to show that the AS steps can
traverse the “curved” parts of the central path in the same iteration complexity bound
as the VY algorithm. Moreover, on the “straight” parts of the path, the rate of
progress amplifies geometrically, thus attaining a log log convergence on these parts.
Subsequently, [129] developed an affine invariant trust region step, which traverses
the full path in 𝑂 (𝑛3.5 log( �̄�∗𝐴 + 𝑛)) iterations. However, the running time of each
iteration is weakly polynomial in 𝑏 and 𝑐. The question of developing an LP algorithm
with complexity bound poly(𝑛, 𝑚, log �̄�∗𝐴) thus remained open.

A related open problem to the above is whether it is possible to compute a near-
optimal rescaling 𝐷 for program (4.2)? This would give an alternate pathway to the
desired LP algorithm by simply preprocessing the matrix 𝐴. The related question of
approximating �̄�𝐴 was already studied by Tunçel [188], who showed NP-hardness for
approximating �̄�𝐴 to within a 2poly(rank(𝐴)) factor. Taken at face value, this may seem
to suggest that approximating the rescaling 𝐷 should be hard.

A further open question is whether Vavasis and Ye’s cross-over analysis can
be improved. Ye in [204] showed that the iteration complexity can be reduced to
𝑂 (𝑛2.5 log( �̄�𝐴 + 𝑛)) for feasibility problems and further to 𝑂 (𝑛1.5 log( �̄�𝐴 + 𝑛)) for
homogeneous systems, though the 𝑂 (𝑛3.5 log( �̄�𝐴 + 𝑛)) bound for optimization has
not been improved since [198].

4.1.1 Our contributions

In this work, we resolve all of the above questions in the affirmative. We detail our
contributions below.

1. Finding an approximately optimal rescaling. As our first contribution, we give
an 𝑂 (𝑚2𝑛2 + 𝑛3) time algorithm that works on the linear matroid of 𝐴 to compute
a diagonal rescaling matrix 𝐷 which achieves �̄�𝐴𝐷 ≤ 𝑛( �̄�∗𝐴)3, given any 𝑚 × 𝑛
matrix 𝐴. Furthermore, this same algorithm allows us to approximate �̄�𝐴 to within
a factor 𝑛( �̄�∗𝐴)2. The algorithm bypasses Tunçel’s hardness result by allowing the
approximation factor to depend on 𝐴 itself, namely on �̄�∗𝐴. This gives a simple first
answer to Monteiro and Tsuchiya’s question: by applying the Vavasis-Ye algorithm
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directly on the preprocessed 𝐴 matrix, we may solve any LP with constraint matrix
𝐴 using 𝑂 (𝑛3.5 log( �̄�∗𝐴 + 𝑛)) iterations. Note that the approximation factor 𝑛( �̄�∗𝐴)2
increases the runtime only by a constant factor.

To achieve this result, we work with the circuits of 𝐴, where a circuit 𝐶 ⊆ [𝑛]
corresponds to an inclusion-wise minimal set of linearly dependent columns. With
each circuit, we can associate a vector 𝑔𝐶 ∈ Ker(𝐴) with supp(𝑔𝐶) = 𝐶 that is unique
up to scaling. By the ‘circuit ratio’ 𝜅𝑖 𝑗 associated with the pair of nodes (𝑖, 𝑗), we
mean the largest ratio |𝑔𝐶𝑗 /𝑔𝐶𝑖 | taken over every circuit 𝐶 of 𝐴 such that 𝑖, 𝑗 ∈ 𝐶. As
our first observation, we show that the maximum of all circuit ratios, which we call the
‘circuit imbalance measure’, in fact characterizes �̄�𝐴 up to a factor 𝑛. This measure
was first studied by Vavasis [197], who showed that it lower bounds �̄�𝐴, though, as far
as we are aware, our upper bound is new. The circuit ratios of each pair (𝑖, 𝑗) induce
a weighted directed graph we call the ‘circuit ratio digraph’ of 𝐴. From here, our
main result is that �̄�∗𝐴 is up to a factor 𝑛 equal to the maximum geometric mean cycle
in the circuit ratio digraph. Our algorithm populates the circuit ratio digraph with
approximations of the 𝜅𝑖 𝑗 ratios for each 𝑖, 𝑗 ∈ [𝑛] using standard techniques from
matroid theory, and then computes a rescaling by solving the dual of the maximum
geometric mean ratio cycle on the ‘approximate circuit ratio digraph’.

2. Scaling invariant LLS algorithm. While the above yields an LP algorithm
with poly(𝑛, 𝑚, log �̄�∗𝐴) running time, it does not satisfactorily address Monteiro
and Tsuchiya’s question for a scaling invariant algorithm. As our second contribution,
we use the circuit ratio digraph directly to give a natural scaling invariant LLS layering
algorithm together with a scaling invariant crossover analysis.

At a conceptual level, we show that the circuit ratios give a scale invariant way
to measure whether ‘𝑥𝑖 > 𝑥 𝑗’ and enable a natural layering algorithm. Assume for
now that the circuit imbalance value 𝜅𝑖 𝑗 is known for every pair (𝑖, 𝑗). Given the
circuit ratio graph induced by the 𝜅𝑖 𝑗’s and given a primal point 𝑥 near the path, our
layering algorithm can be described as follows. We first rescale the variables so that 𝑥
becomes the all ones vector, which rescales 𝜅𝑖 𝑗 to 𝜅𝑖 𝑗𝑥𝑖/𝑥 𝑗 . We then restrict the graph
to its edges of length 𝜅𝑖 𝑗𝑥𝑖/𝑥 𝑗 ≥ 1/poly(𝑛)—the long edges of the (rescaled) circuit
ratio graph—and let the layering 𝐽1 ∪ 𝐽2 ∪ . . . ∪ 𝐽𝑝 be a topological ordering of its
strongly connected components (SCC) with edges going from left to right. Intuitively,
variables that “affect each other” should be in the same layer, which motivates the
SCC definition.

We note that our layering algorithm does not in fact have access to the true circuit
ratios 𝜅𝑖 𝑗 , as these are NP-hard to compute. Getting a good enough initial estimate
for our purposes however is easy: we let 𝜅𝑖 𝑗 be the ratio corresponding to an arbitrary
circuit containing 𝑖 and 𝑗 . This already turns out to be within a factor ( �̄�∗𝐴)2 from the
true value 𝜅𝑖 𝑗 , which we recall is the maximum over all such circuits. Our layering
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algorithm in fact learns better circuit ratio estimates if the “lifting costs” of our SCC
layering, i.e., how much it costs to lift changes from lower layer variables to higher
layers (as in the definition of �̄�𝐴), are larger than we expected them to be based on
the previous estimates.

We develop a scaling-invariant analogue of cross-over events as follows. Be-
fore the crossover event, poly(𝑛) ( �̄�∗𝐴)𝑛 > 𝜅𝑖 𝑗𝑥𝑖/𝑥 𝑗 , and after the crossover event,
poly(𝑛) ( �̄�∗𝐴)𝑛 < 𝜅𝑖 𝑗𝑥𝑖/𝑥 𝑗 for all further central path points. Our analysis relies on
�̄�∗𝐴 in only a minimalistic way, and does not require an estimate on the value of �̄�∗𝐴.
Namely, it is only used to show that if 𝑖, 𝑗 ∈ 𝐽𝑞, for a layer 𝑞 ∈ [𝑝], then the rescaled
circuit ratio 𝜅𝑖 𝑗𝑥𝑖/𝑥 𝑗 is in the range (poly(𝑛) �̄�∗𝐴)𝑂 (±|𝐽𝑞 |) . The argument to show this
crucially utilizes the maximum geometric mean cycle characterization. Furthermore,
unlike prior analyses [146, 198], our definition of a “good” layering (i.e., ‘balanced’
layerings, see Section 4.3.5), is completely independent of �̄�∗𝐴.

3. Improved potential analysis. As our third contribution, we improve the Vavasis–Ye
crossover analysis using a new and simple potential function based approach. When
applied to our new LLS algorithm, we derive an 𝑂 (𝑛2.5 log 𝑛 log( �̄�∗𝐴 + 𝑛)) iteration
bound for path following, improving the polynomial term by an Ω(𝑛/log 𝑛) factor
compared to the VY analysis.

Our potential function can be seen as a fine-grained version of the crossover
events as described above. In case of such a crossover event, it is guaranteed that in
every subsequent iteration, 𝑖 is in a layer before 𝑗 . We analyze less radical changes
instead: an “event” parametrized by 𝜏 means that 𝑖 and 𝑗 are currently together on a
layer of size ≤ 𝜏, and after the event, 𝑖 is on a layer before 𝑗 , or if they are together on
the same layer, then this layer must have size ≥ 2𝜏. For every LLS step, we can find
a parameter 𝜏 such that an event of this type happens concurrently for at least 𝜏 − 1
pairs within the next 𝑂 (√𝑛𝜏 log( �̄�∗𝐴 + 𝑛)) iterations,

Our improved analysis is also applicable to the original VY-algorithm. Let us
now comment on the relation between the VY-algorithm and our new algorithm.
The VY-algorithm starts a new layer once 𝑥𝜋 (𝑖) > 𝑔𝑥𝜋 (𝑖+1) between two consecutive
variables where the permutation 𝜋 is a non-increasing order of the 𝑥𝑖 variables, and
𝑔 = poly(𝑛) �̄�. Setting the initial ‘estimates’ 𝜅𝑖 𝑗 = �̄� for a suitable polynomial, our
algorithm runs the same way as the VY algorithm. Using these estimates, the layering
procedure becomes much simpler: there is no need to verify ‘balancedness’ as in our
algorithm.

However, using estimates 𝜅𝑖 𝑗 = �̄� has drawbacks. Most importantly, it does not
give a lower bound on the true circuit ratio 𝜅𝑖 𝑗—to the contrary, 𝑔 will be an upper
bound. In effect, this causes VY’s layers to be “much larger” than ours, and for this
reason, the connection to �̄�∗𝐴 is lost. Nevertheless, our potential function analysis can
still be adapted to the VY-algorithm to obtain the same Ω(𝑛/log 𝑛) improvement on
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the iteration complexity bound; see Section 4.4.1 for more details.

4.1.2 Related work

Since the seminal works of Karmarkar [119] and Renegar [160], there has been a
tremendous amount of work on speeding up and improving interior-point methods.
In contrast to the present work, the focus of these works has mostly been to improve
complexity of approximately solving LPs. Progress has taken many forms, such as
the development of novel barrier methods, such as Vaidya’s volumetric barrier [190]
and the recent entropic barrier of Bubeck and Eldan [37] and the weighted log-barrier
of Lee and Sidford [132], together with new path following techniques, such as the
predictor-corrector framework [143, 145], as well as advances in fast linear system
solving [131, 178]. There has been substantial progress in improving IPM by amor-
tizing the cost of the iterative updates, and working with approximate computations,
see e.g. [160, 190] for classical results. Recently, Cohen, Lee and Song [45] devel-
oped a new inverse maintenance scheme to get a randomized �̃� (𝑛𝜔 log(1/𝜀))-time
algorithm for 𝜀-approximate LP, which was derandomized by van den Brand [192];
here 𝜔 ≈ 2.37 is the matrix multiplication exponent. A very recent result by van den
Brand et al. [195] obtained a randomized �̃� ((𝑛𝑚 + 𝑚3) log(1/𝜀)) algorithm. For
special classes of LP such as network flow and matching problems, even faster algo-
rithms have been obtained using, among other techniques, fast Laplacian solvers, see
e.g. [55, 135, 193, 194]. Given the progress above, we believe it to be an interesting
problem to understand to what extent these new numerical techniques can be applied
to speed up LLS computations, though we expect that such computations will require
very high precision. We note that no attempt has been made in the present work to
optimize the complexity of the linear algebra.

Subsequent to this work, [53] extended Tardos’s framework to the real model of
computation, showing that poly(𝑛, 𝑚, log �̄�𝐴) running time can be achieved using
approximate solvers in a black box manner. Combined with [192], one obtains a
deterministic 𝑂 (𝑚𝑛𝜔+1 log(𝑛) log( �̄�𝐴 + 𝑛)) LP algorithm; using the initial rescaling
subroutine from this chapter, the dependence can be improved to �̄�∗𝐴; together with the
preprocessing time, this amounts to𝑂 (𝑚2𝑛2 +𝑚𝑛𝜔+1 log(𝑛) log( �̄�∗𝐴 + 𝑛)). A weaker
extension of Tardos’s framework to the real model of computation was previously
given by Ho and Tunçel [107].

With regard to LLS algorithms, the original VY-algorithm required explicit knowl-
edge of �̄�𝐴 to implement their layering algorithm. The paper [142] showed that this
could be avoided by computing all LLS steps associated with 𝑛 candidate partitions
and picking the best one. In particular, they showed that all such LLS steps can be
computed in𝑂 (𝑚2𝑛) time. In [146], an alternate approach was presented to compute
an LLS partition directly from the coefficients of the AS step. We note that these
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methods crucially rely on the variable ordering, and hence are not scaling invariant.
Kitahara and Tsuchiya [124], gave a 2-layer LLS step which achieves a running time
depending only on �̄�∗𝐴 and right-hand side 𝑏, but with no dependence on the objective,
assuming the primal feasible region is bounded.

A series of papers have studied the central path from a differential geometry
perspective. Monteiro and Tsuchiya [148] showed that a curvature integral of the
central path, first introduced by Sonnevend, Stoer, and Zhao [176], is in fact upper
bounded by𝑂 (𝑛3.5 log( �̄�∗𝐴+𝑛)). This has been extended to SDP and symmetric cone
programming [116], and also studied in the context of information geometry [115].

Circuits have appeared in several papers on linear and integer optimization (see
[63] and references within). The idea of using circuits within the context of LP
algorithms also appears in [62]. They develop an augmentation framework for LP
(as well ILP) and show that a simplex-like algorithm which takes steps according to
the “best circuit” direction achieves linear convergence, though these steps are hard
to compute.

Our algorithm makes progress towards strongly polynomial solvability of LP, by
improving the dependence poly(𝑛, 𝑚, log �̄�𝐴) to poly(𝑛, 𝑚, log �̄�∗𝐴). However, in a
remarkable recent paper, Allamigeon et al. [5] have shown, using tools from tropical
geometry, that path-following methods for the standard logarithmic barrier cannot
be strongly polynomial. In particular, they give a parametrized family of instances,
where, for sufficiently large parameter values, any sequence of iterations following
the central path must be of exponential length—thus, �̄�∗𝐴 will be doubly exponential.

4.1.3 Organization

The rest of the chapter is organized as follows. We conclude this section by introducing
some notation. Section 4.2 discusses our results on the circuit imbalance measure. It
starts with Section 4.2.1 on the necessary background on the condition measures �̄�𝐴
and �̄�∗𝐴. Section 4.2.2 introduces the circuit imbalance measure, and formulates and
explains all main results of Section 4.2. The proofs are given in the rest of the sections:
basic properties in Section 4.2.3, the min-max characterization in Section 4.2.4, the
circuit finding algorithm in Section 4.2.5, the algorithms for approximating �̄�∗𝐴 and
�̄�𝐴 in Section 4.2.6.

In Section 4.3, we develop our scaling invariant interior-point method. Interior-
point preliminaries are given in Section 4.3.1. Section 4.3.2 introduces the affine
scaling and layered-least-squares directions, and proves some basic properties. Sec-
tion 4.3.3 provides a detailed overview of the high level ideas and a roadmap to the
analysis. Section 4.3.4 further develops the theory of LLS directions and introduces
partition lifting scores. Section 4.3.5 gives our scaling invariant layering procedure,
and our overall algorithm is given in Section 4.3.6.
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In Section 4.4, we give the potential function proof for the improved iteration
bound, relying on technical lemmas. The full proof of these lemmas is deferred
to Section 4.6; however, Section 4.4 provides the high-level ideas to each proof.
Section 4.4.1 shows that our argument also leads to a factor Ω(𝑛/log 𝑛) improvement
in the iteration complexity bound of the VY-algorithm.

In Section 4.5, we prove the technical properties of our LLS step, including its
proximity to AS and step length estimates. Finally, in Section 4.7, we discuss the
initialization of our interior-point method.

Besides reading linearly, we suggest two other possible strategies for navigating
this chapter. Readers mainly interested in the circuit imbalance measure and its
approximation may focus only on Section 4.2; this part can be understood without
any familiarity with interior point methods. Other readers, who wish to mainly focus
on our interior point algorithm may read Section 4.2 only up to Section 4.2.2; this
includes all concepts and statements necessary for the algorithm.

4.1.4 Notation

Here we specify some general notation that we will use in this chapter. See also
Section 1.5.

For a vector 𝑥 ∈ R𝑛, we let Diag(𝑥) ∈ R𝑛×𝑛 denote the diagonal matrix with 𝑥
on the diagonal. We let D𝑛 denote the set of all positive 𝑛 × 𝑛 diagonal matrices,
dropping the subscript if the dimension is clear. For 𝑥, 𝑦 ∈ R𝑛, we use the notation
𝑥𝑦 ∈ R𝑛 to denote 𝑥𝑦 = Diag(𝑥)𝑦 = (𝑥𝑖𝑦𝑖)𝑖∈[𝑛] . The inner product of the two vectors
is denoted as 𝑥T𝑦. For 𝑝 ∈ Q, we also use the notation 𝑥𝑝 to denote the vector
(𝑥𝑝𝑖 )𝑖∈[𝑛] . Similarly, for 𝑥, 𝑦 ∈ R𝑛, we let 𝑥/𝑦 denote the vector (𝑥𝑖/𝑦𝑖)𝑖∈[𝑛] . We
denote the support of a vector 𝑥 ∈ R𝑛 by supp(𝑥) = {𝑖 ∈ [𝑛] : 𝑥𝑖 ≠ 0}.

For an index subset 𝐼 ⊆ [𝑛], we use 𝜋𝐼 : R𝑛 → R𝐼 for the coordinate projection.
That is, 𝜋𝐼 (𝑥) = 𝑥𝐼 , and for a subset 𝑆 ⊆ R𝑛, 𝜋𝐼 (𝑆) = {𝑥𝐼 : 𝑥 ∈ 𝑆}. We let
R𝑛𝐼 = {𝑥 ∈ R𝑛 : 𝑥 [𝑛]\𝐼 = ®0}.

For a matrix 𝐵 ∈ R𝑛×𝑘 , 𝐼 ⊆ [𝑛] and 𝐽 ⊆ [𝑘] we let 𝐵𝐼 ,𝐽 denote the submatrix of
𝐵 restricted to the set of rows in 𝐼 and columns in 𝐽. We also use 𝐵𝐼 ,• = 𝐵𝐼 , [𝑘 ] and
𝐵𝐽 = 𝐵•,𝐽 = 𝐵 [𝑛],𝐽 . We let 𝐵† ∈ R𝑘×𝑛 denote the pseudo-inverse of 𝐵.

We let Ker(𝐴) denote the kernel of the matrix 𝐴 ⊆ R𝑚×𝑛. Throughout, we
assume that the matrix 𝐴 in (4.1) has full row rank, and that 𝑛 ≥ 3.
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Subspace formulation Throughout the chapter, we let 𝑊 = Ker(𝐴) ⊆ R𝑛 denote
the kernel of the matrix 𝐴. Using this notation, (4.1) can be written in the form

min 𝑐T𝑥

𝑥 ∈ 𝑊 + 𝑑
𝑥 ≥ ®0,

max 𝑑T (𝑐 − 𝑠)
𝑠 ∈ 𝑊⊥ + 𝑐
𝑠 ≥ ®0,

(4.3)

where 𝑑 ∈ R𝑛 satisfies 𝐴𝑑 = 𝑏.

4.2 Finding an approximately optimal rescaling

4.2.1 The condition number �̄�

The condition number �̄�𝐴 is defined as

�̄�𝐴 = sup
{
‖𝐴T

(
𝐴𝐷𝐴T

)−1
𝐴𝐷‖ : 𝐷 ∈ D

}
= sup

{
‖𝐴T𝑦‖
‖𝑝‖ : 𝑦 minimizes ‖𝐷1/2(𝐴T𝑦 − 𝑝)‖ for some ®0 ≠ 𝑝 ∈ R𝑛, 𝐷 ∈ D

}
.

(4.4)
This condition number was first studied by Dikin [71], Stewart [180], and Todd [185],
among others, and plays a key role in the analysis of the Vavasis–Ye interior point
method [198]. There is an extensive literature on the properties and applications of
�̄�𝐴, as well as its relations to other condition numbers. We refer the reader to the
papers [107,146,198] for further results and references.

It is important to note that �̄�𝐴 only depends on the subspace 𝑊 = Ker(𝐴).
Hence, we can also write �̄�𝑊 for a subspace 𝑊 ⊆ R𝑛, defined to be equal to �̄�𝐴 for
some matrix 𝐴 ∈ R𝑘×𝑛 with 𝑊 = Ker(𝐴). We will use the notations �̄�𝐴 and �̄�𝑊
interchangeably.

The next lemma summarizes some important known properties of �̄�𝐴.

Proposition 4.2.1. Let 𝐴 ∈ R𝑚×𝑛 with full row rank and𝑊 = Ker(𝐴).

(i) If the entries of 𝐴 are all integers, then �̄�𝐴 is bounded by 2𝑂 (𝐿𝐴) , where 𝐿𝐴 is
the input bit length of 𝐴.

(ii) �̄�𝐴 = max{‖𝐵−1𝐴‖ : 𝐵 non-singular 𝑚 × 𝑚-submatrix of 𝐴}.

(iii) Let the columns of 𝐵 ∈ R𝑛×(𝑛−𝑚) form an orthonormal basis of𝑊 . Then

�̄�𝑊 = max
{
‖𝐵𝐵†𝐼 ,•‖ : ∅ ≠ 𝐼 ⊆ [𝑛]

}
.
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(iv) �̄�𝑊 = �̄�𝑊 ⊥ .

Proof. Part (i) was proved in [198, Lemma 24]. For part (ii), see [187, Theorem
1] and [198, Lemma 3]. In part (iii), the direction ≥ was proved in [180], and the
direction ≤ in [154]. The duality statement (iv) was shown in [101]. □

In Proposition 4.3.8, we will also give another proof of (iv). We now define the
lifting map, a key operation in this chapter, and explain its connection to �̄�𝐴.

Definition 4.2.2. Let us define the lifting map 𝐿𝑊𝐼 : 𝜋𝐼 (𝑊) → 𝑊 by

𝐿𝑊𝐼 (𝑝) = arg min {‖𝑧‖ : 𝑧𝐼 = 𝑝, 𝑧 ∈ 𝑊} .

Note that 𝐿𝑊𝐼 is the unique linear map from 𝜋𝐼 (𝑊) to𝑊 such that
(
𝐿𝑊𝐼 (𝑝)

)
𝐼
= 𝑝

and 𝐿𝑊𝐼 (𝑝) is orthogonal to𝑊 ∩ R𝑛[𝑛]\𝐼 .

Lemma 4.2.3. Let 𝑊 ⊆ R𝑛 be an (𝑛 − 𝑚)-dimensional linear subspace. Let the
columns of 𝐵 ∈ R𝑛×(𝑛−𝑚) denote an orthonormal basis of𝑊 . Then, viewing 𝐿𝑊𝐼 as
a matrix in R𝑛×|𝐼 |,

𝐿𝑊𝐼 = 𝐵𝐵†𝐼 ,• .

Proof. If 𝑝 ∈ 𝜋𝐼 (𝑊), then 𝑝 = 𝐵𝐼 ,•𝑦 for some 𝑦 ∈ R𝑛−𝑚. A property of the pseudo-
inverse is that 𝐵†𝐼 ,•𝐵𝐼 ,• is the orthogonal projection onto the orthogonal complement
of the kernel of 𝐵𝐼 ,•, from which it follows that 𝐵†𝐼 ,•𝑝 = arg min𝑝=𝐵𝐼 ,•𝑦 ‖𝑦‖. This
solution satisfies 𝜋𝐼 (𝐵𝐵†𝐼 ,•𝑝) = 𝑝 and 𝐵𝐵†𝐼 ,•𝑝 ∈ 𝑊 . Since the columns of 𝐵 form an
orthonormal basis of𝑊 , we have ‖𝐵𝐵†𝐼 ,•𝑝‖ = ‖𝐵

†
𝐼 ,•𝑝‖. Consequently, 𝐵𝐵†𝐼 ,•𝑝 is the

minimum-norm point with the above properties. □

The above lemma and Proposition 4.2.1(iii) yield the following characterization.
This will be the most suitable characterization of �̄�𝑊 for our purposes.

Proposition 4.2.4. For a linear subspace𝑊 ⊆ R𝑛,

�̄�𝑊 = max
{
‖𝐿𝑊𝐼 ‖ : 𝐼 ⊆ [𝑛], 𝐼 ≠ ∅

}
.

The following notation will be convenient for our algorithm. For a subspace
𝑊 ⊆ R𝑛 and an index set 𝐼 ⊆ [𝑛], if 𝜋𝐼 (𝑊) ≠ {®0} then we define the lifting score

ℓ𝑊 (𝐼) :=
√
‖𝐿𝑊𝐼 ‖2 − 1 . (4.5)

Otherwise, we define ℓ𝑊 (𝐼) = 0. This means that for any 𝑧 ∈ 𝜋𝐼 (𝑊) and 𝑥 = 𝐿𝑊𝐼 (𝑧),
‖𝑥 [𝑛]\𝐼 ‖ ≤ ℓ𝑊 (𝐼)‖𝑧‖.
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The condition number �̄�∗𝐴 For every 𝐷 ∈ D, we can consider the condition number
�̄�𝑊𝐷 = �̄�𝐴𝐷−1 . We let

�̄�∗𝑊 = �̄�∗𝐴 = inf{ �̄�𝑊𝐷 : 𝐷 ∈ D}

denote the best possible value of �̄� that can be attained by rescaling the coordinates
of𝑊 . The main result of this section is the following theorem.

Theorem 4.2.5 (Proof on p. 139). There is an 𝑂 (𝑛2𝑚2 + 𝑛3) time algorithm that for
any matrix 𝐴 ∈ R𝑚×𝑛 computes an estimate 𝜉 of �̄�𝑊 such that

𝜉 ≤ �̄�𝑊 ≤ 𝑛( �̄�∗𝑊 )2𝜉

and a 𝐷 ∈ D such that
�̄�∗𝑊 ≤ �̄�𝑊𝐷 ≤ 𝑛( �̄�∗𝑊 )3 .

4.2.2 The circuit imbalance measure

The key tool in proving Theorem 4.2.5 is to study a more combinatorial condition
number, the circuit imbalance measure which turns out to give a good proxy to �̄�𝐴.

Definition 4.2.6. For a linear subspace𝑊 ⊆ R𝑛 and a matrix 𝐴 such that𝑊 = Ker(𝐴),
a circuit is an inclusion-wise minimal dependent set of columns of 𝐴. Equivalently, a
circuit is a set 𝐶 ⊆ [𝑛] such that𝑊 ∩R𝑛𝐶 is one-dimensional and that no strict subset
of 𝐶 has this property. The set of circuits of𝑊 is denoted C𝑊 .

Note that circuits defined above are the same as the circuits in the linear matroid
associated with 𝐴. Every circuit 𝐶 ∈ C𝑊 can be associated with a vector 𝑔𝐶 ∈ 𝑊
such that supp(𝑔𝐶) = 𝐶; this vector is unique up to scalar multiplication.

Definition 4.2.7. For a circuit 𝐶 ∈ C𝑊 and 𝑖, 𝑗 ∈ 𝐶, we let

𝜅𝑊𝑖 𝑗 (𝐶) =

���𝑔𝐶𝑗 �����𝑔𝐶𝑖 �� . (4.6)

Note that since 𝑔𝐶 is unique up to scalar multiplication, this is independent of the
choice of 𝑔𝐶 . For any 𝑖, 𝑗 ∈ [𝑛], we define the circuit ratio as the maximum of
𝜅𝑊𝑖 𝑗 (𝐶) over all choices of the circuit 𝐶:

𝜅𝑊𝑖 𝑗 = max
{
𝜅𝑊𝑖 𝑗 (𝐶) : 𝐶 ∈ C𝑊 , 𝑖, 𝑗 ∈ 𝐶

}
. (4.7)
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By convention we set 𝜅𝑊𝑖 𝑗 = 0 if there is no circuit supporting 𝑖 and 𝑗 . Further, we
define the circuit imbalance measure as

𝜅𝑊 = max
{
𝜅𝑊𝑖 𝑗 : 𝑖, 𝑗 ∈ [𝑛]

}
.

Minimizing over all coordinate rescalings, we define

𝜅∗𝑊 = min {𝜅𝑊𝐷 : 𝐷 ∈ D} .

We omit the index𝑊 whenever it is clear from context. Further, for a vector 𝑑 ∈ R𝑛++,
we write 𝜅𝑑𝑖 𝑗 = 𝜅

Diag(𝑑)𝑊
𝑖 𝑗 and 𝜅𝑑 = 𝜅𝑑𝑊 = 𝜅Diag(𝑑)𝑊 .

We want to remark that a priori it is not clear that 𝜅∗𝑊 is well-defined. Theo-
rem 4.2.13 will show that the minimum of {𝜅𝑊𝐷 : 𝐷 ∈ D} is indeed attained.

We next formulate the main statements on the circuit imbalance measure; proofs
will be given in the subsequent subsections. Crucially, we show that the circuit
imbalance 𝜅𝑊 is a good proxy to the condition number �̄�𝑊 . The lower bound was
already proven in [197], and the upper bound is from [53].

Theorem 4.2.8 (Proof on p. 130). For a linear subspace𝑊 ⊆ R𝑛,√
1 + (𝜅𝑊 )2 ≤ �̄�𝑊 ≤ 𝑛𝜅𝑊 .

We now overview some basic properties of 𝜅𝑊 . Proposition 4.2.4 asserts that
�̄�𝑊 is the maximum ℓ2 → ℓ2 operator norm of the mappings 𝐿𝑊𝐼 over 𝐼 ⊆ [𝑛]. In
[53], it was shown that 𝜅𝑊 is in contrast the maximum ℓ1 → ℓ∞ operator norm of the
same mappings; this easily implies the upper bound �̄�𝑊 ≤ 𝑛𝜅𝑊 .

Proposition 4.2.9 ([53]). For a linear subspace𝑊 ⊆ R𝑛,

𝜅𝑊 = max

{
‖𝐿𝑊𝐼 (𝑝)‖∞
‖𝑝‖1

: 𝐼 ⊆ [𝑛], 𝐼 ≠ ∅, 𝑝 ∈ 𝜋𝐼 (𝑊) \ {®0}
}
.

Similarly to �̄�𝑊 , 𝜅𝑊 is self-dual; moreover, this holds for all individual 𝜅𝑊𝑖 𝑗 values.

Lemma 4.2.10 (Proof on p. 131). For any subspace 𝑊 ⊆ R𝑛 and 𝑖, 𝑗 ∈ [𝑛], 𝜅𝑊𝑖 𝑗 =

𝜅𝑊
⊥

𝑗𝑖 .

The next lemma provides a subroutine that efficienctly yields upper bounds on
ℓ𝑊 (𝐼) or lower bounds on some circuit imbalance values. Recall the definition of the
lifting score ℓ𝑊 (𝐼) from (4.5).
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Lemma 4.2.11 (Proof on p. 131). There exists a subroutine Verify-Lift(𝑊, 𝐼, 𝜃)
that, given a linear subspace𝑊 ⊆ R𝑛, an index set 𝐼 ⊆ [𝑛], and a threshold 𝜃 ∈ R++,
either returns the answer ‘pass’, verifying ℓ𝑊 (𝐼) ≤ 𝜃, or returns the answer ‘fail’,
and a pair 𝑖 ∈ 𝐼, 𝑗 ∈ [𝑛] \ 𝐼 such that 𝜃/𝑛 ≤ 𝜅𝑊𝑖 𝑗 . The running time can be bounded
as 𝑂 (𝑛(𝑛 − 𝑚)2).

The proof of the above statements are given in Section 4.2.3.

A min-max theorem We next provide a combinatorial min-max characterization
of 𝜅∗𝑊 . Consider the circuit ratio digraph 𝐺 = ( [𝑛], 𝐸) on the node set [𝑛] where
(𝑖, 𝑗) ∈ 𝐸 if 𝜅𝑖 𝑗 > 0, that is, there exists a circuit 𝐶 ∈ C with 𝑖, 𝑗 ∈ 𝐶. We will
refer to 𝜅𝑖 𝑗 = 𝜅𝑊𝑖 𝑗 as the weight of the edge (𝑖, 𝑗). (Note that (𝑖, 𝑗) ∈ 𝐸 if and only if
( 𝑗 , 𝑖) ∈ 𝐸 , but the weight of these two edges can be different.)

Definition 4.2.12. Let𝐻 be a cycle in𝐺: a sequence of indices 𝑖1, 𝑖2, . . . , 𝑖𝑘 , 𝑖𝑘+1 = 𝑖1.
We use |𝐻 | = 𝑘 to denote the length of the cycle. (In our terminology, ‘cycles’ always
refer to objects in 𝐺, whereas ‘circuits’ refer to the minimum supports in Ker(𝐴).)
We use the notation 𝜅(𝐻) = 𝜅𝑊 (𝐻) =

∏𝑘
𝑗=1 𝜅

𝑊
𝑖 𝑗 𝑖 𝑗+1

. For a vector 𝑑 ∈ R𝑛++, we denote
𝜅𝑑𝑊 (𝐻) = 𝜅Diag(𝑑)𝑊 (𝐻).

A simple but important observation is that such a rescaling does not change the
value associated with the cycle, that is,

𝜅𝑑𝑊 (𝐻) = 𝜅𝑊 (𝐻) ∀𝑑 ∈ R𝑛++ for any cycle 𝐻 in 𝐺 . (4.8)

Theorem 4.2.13 (Proof on p. 132). For a subspace𝑊 ⊆ R𝑛, we have

𝜅∗𝑊 = min
𝑑>®0

𝜅𝑑𝑊 = max
{
𝜅𝑊 (𝐻)1/|𝐻 | : 𝐻 is a cycle in 𝐺

}
.

The proof relies on the following formulation:

𝜅∗𝑊 = min 𝑡
𝜅𝑖 𝑗𝑑 𝑗/𝑑𝑖 ≤ 𝑡 ∀(𝑖, 𝑗) ∈ 𝐸

𝑑 > ®0.

Taking logarithms, we can rewrite this problem as

min 𝑠
log 𝜅𝑖 𝑗 + 𝑧 𝑗 − 𝑧𝑖 ≤ 𝑠 ∀(𝑖, 𝑗) ∈ 𝐸

𝑧 ∈ R𝑛.
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This is the dual of the minimum-mean cycle problem with weights log 𝜅𝑖 𝑗 , and can
be solved in polynomial time (see e.g. [4, Theorem 5.8]).

Whereas this formulation verifies Theorem 4.2.13, it does not give a polynomial-
time algorithm to compute 𝜅∗𝑊 . The caveat is that the values 𝜅𝑊𝑖 𝑗 are typically not
available; in fact, approximating them up to a factor 2𝑂 (𝑚) is NP-hard, as follows
from the work of Tunçel [188].

Nevertheless, the following corollary of Theorem 4.2.13 shows that any arbitrary
circuit containing 𝑖 and 𝑗 yields a (𝜅∗)2 approximation to 𝜅𝑖 𝑗 .

Corollary 4.2.14 (Proof on p. 133). Let us be given a linear subspace𝑊 ⊆ R𝑛 and
𝑖, 𝑗 ∈ [𝑛], 𝑖 ≠ 𝑗 , and a circuit 𝐶 ∈ C𝑊 with 𝑖, 𝑗 ∈ 𝐶. Let 𝑔 ∈ 𝑊 be the corresponding
vector with supp(𝑔) = 𝐶. Then,

𝜅𝑊𝑖 𝑗(
𝜅∗𝑊

)2 ≤
|𝑔 𝑗 |
|𝑔𝑖 |
≤ 𝜅𝑊𝑖 𝑗 .

The above statements are shown in Section 4.2.4. In Section 4.2.5, we use
techniques from matroid theory and linear algebra to efficiently identify a circuit
for any pair of variables that are contained in the same circuit. A matroid is non-
separable if the circuit hypergraph is connected; precise definitions and background
will be described in Section 4.2.5.

Theorem 4.2.15 (Proof on p. 136). Given 𝐴 ∈ R𝑚×𝑛, there exists an 𝑂 (𝑛2𝑚2) time
algorithm Find-Circuits(𝐴) that obtains a decomposition ofM(𝐴) to a direct sum
of non-separable linear matroids, and returns a family Ĉ of circuits such that if 𝑖 and
𝑗 are in the same non-separable component, then there exists a circuit in Ĉ containing
both 𝑖 and 𝑗 . Further, for each 𝑖 ≠ 𝑗 in the same component, the algorithm returns
a value 𝜅𝑖 𝑗 as the the maximum of |𝑔 𝑗/𝑔𝑖 | such that 𝑔 ∈ 𝑊 , supp(𝑔) = 𝐶 for some
𝐶 ∈ Ĉ containing 𝑖 and 𝑗 . For these values, 𝜅𝑖 𝑗 ≤ 𝜅𝑖 𝑗 ≤ (𝜅∗)2𝜅𝑖 𝑗 .

Finally, in Section 4.2.6, we combine the above results to prove Theorem 4.2.5
on approximating �̄�∗𝑊 and 𝜅∗𝑊 .

Section 4.2.5 contains an interesting additional statement, namely that the loga-
rithms of the circuit ratios satisfy the triangle inequality. This will also be useful in
the analysis of the LLS algorithm. The proof uses similar arguments as the proof of
Theorem 4.2.15.

Lemma 4.2.16 (Proof on p. 137).

(i) For any distinct 𝑖, 𝑗 , 𝑘 in the same connected component of C𝑊 , and any 𝑔𝐶
with 𝑖, 𝑗 ∈ 𝐶, 𝐶 ∈ C𝑊 , there exist circuits 𝐶1, 𝐶2 ∈ C𝑊 , 𝑖, 𝑘 ∈ 𝐶1, 𝑗 , 𝑘 ∈ 𝐶2
such that |𝑔𝐶𝑗 /𝑔𝐶𝑖 | = |𝑔

𝐶2
𝑗 /𝑔

𝐶2
𝑘 | · |𝑔

𝐶1
𝑘 /𝑔

𝐶1
𝑖 |.

(ii) For any distinct 𝑖, 𝑗 , 𝑘 in the same connected component of C𝑊 , 𝜅𝑖 𝑗 ≤ 𝜅𝑖𝑘 · 𝜅𝑘 𝑗 .
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4.2.3 Basic properties of 𝜅𝑊

Theorem 4.2.8 (Repetition). For a linear subspace𝑊 ⊆ R𝑛,√
1 + (𝜅𝑊 )2 ≤ �̄�𝑊 ≤ 𝑛𝜅𝑊 .

Proof. For the first inequality, let 𝐶 ∈ C𝑊 be the circuit and 𝑖 ≠ 𝑗 ∈ 𝐶 such that
|𝑔 𝑗/𝑔𝑖 | = 𝜅𝑊 for the corresponding solution 𝑔 = 𝑔𝐶 . Let us use the characterization
of �̄�𝑊 in Proposition 4.2.4. Let 𝐼 = ( [𝑛] \ 𝐶) ∪ {𝑖}, and 𝑝 = 𝑔𝑖𝑒𝑖 , that is, the vector
with 𝑝𝑖 = 𝑔𝑖 and 𝑝𝑘 = 0 for 𝑘 ≠ 𝑖. Then, the unique vector 𝑧 ∈ 𝑊 such that 𝑧𝐼 = 𝑝 is
𝑧 = 𝑔. Therefore,

�̄�𝑊 ≥ min
𝑧∈𝑊 ,𝑧𝐼=𝑝

‖𝑧‖
‖𝑝‖ =

‖𝑔‖
|𝑔𝑖 |
≥

√
|𝑔𝑖 |2 + |𝑔 𝑗 |2

|𝑔𝑖 |
=

√
1 + 𝜅2

𝑊 .

The second inequality is immediate from Proposition 4.2.4 and Proposition 4.2.9,
and the inequalities between ℓ1, ℓ2, and ℓ∞ norms. The proof of the slightly weaker
�̄�𝑊 ≤

√
1 + (𝑛𝜅𝑊 )2 follows from Lemma 4.2.11. □

The next lemma will be needed to prove Lemma 4.2.11 and also to analyze the
LLS algorithm. Let us say that the vector 𝑦 ∈ R𝑛 is sign-consistent with 𝑥 ∈ R𝑛 if
𝑥𝑖𝑦𝑖 ≥ 0 for all 𝑖 ∈ [𝑛] and 𝑥𝑖 = 0 implies 𝑦𝑖 = 0 for all 𝑖 ∈ [𝑛].

Lemma 4.2.17. For 𝑖 ∈ 𝐼 ⊆ [𝑛] with 𝑒𝑖𝐼 ∈ 𝜋𝐼 (𝑊), let 𝑧 = 𝐿𝑊𝐼 (𝑒𝑖𝐼 ). Then for any
𝑗 ∈ supp(𝑧) we have 𝜅𝑊𝑖 𝑗 ≥ |𝑧 𝑗 |.

Proof. We consider the cone 𝐹 ⊆ 𝑊 of vectors sign-consistent with 𝑧. The faces
of 𝐹 are bounded by inequalities of the form 𝑧𝑘 𝑦𝑘 ≥ 0 or 𝑦𝑘 = 0. The edges (rays)
of 𝐹 are of the form {𝛼𝑔 : 𝛼 ≥ 0} with supp(𝑔) ∈ C𝑊 . It is easy to see from the
Minkowski-Weyl theorem that 𝑧 can be written as

𝑧 =
ℎ∑
𝑘=1

𝑔𝑘 ,

where ℎ ≤ 𝑛, 𝐶1, 𝐶2, . . . , 𝐶ℎ ∈ C𝑊 are circuits, and the vectors 𝑔1, 𝑔2, . . . , 𝑔ℎ ∈ 𝑊
are sign-consistent with 𝑧 and supp(𝑔𝑘) = 𝐶𝑘 for all 𝑘 ∈ [ℎ]. Note that 𝑖 ∈ 𝐶𝑘 for all
𝑘 ∈ [ℎ], as otherwise, 𝑧′ = 𝑧 − 𝑔𝑘 would also satisfy 𝑧′𝐼 = 𝑒

𝑖
𝐼 , but ‖𝑧′‖ < ‖𝑧‖ due to

𝑔𝑘 being sign-consistent with 𝑧, a contradiction to the definition of 𝑧.

At least one 𝑘 ∈ [ℎ] contributes at least as much to |𝑧 𝑗 | =
∑ℎ

𝑘=1 |𝑔
𝑘
𝑗 |∑ℎ

𝑘=1 𝑔
𝑘
𝑖

as the average.

Hence we find 𝜅𝑊𝑖 𝑗 ≥ |𝑔𝑘𝑗 /𝑔𝑘𝑖 | ≥ |𝑧 𝑗 |. □
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Lemma 4.2.11 (Repetition). There exists a subroutine Verify-Lift(𝑊, 𝐼, 𝜃) that,
given a linear subspace 𝑊 ⊆ R𝑛, an index set 𝐼 ⊆ [𝑛], and a threshold 𝜃 ∈ R++,
either returns the answer ‘pass’, verifying ℓ𝑊 (𝐼) ≤ 𝜃, or returns the answer ‘fail’,
and a pair 𝑖 ∈ 𝐼, 𝑗 ∈ [𝑛] \ 𝐼 such that 𝜃/𝑛 ≤ 𝜅𝑊𝑖 𝑗 . The running time can be bounded
as 𝑂 (𝑛(𝑛 − 𝑚)2).

Proof. Take any minimal 𝐼 ′ ⊆ 𝐼 such that dim(𝜋𝐼 ′ (𝑊)) = dim(𝜋𝐼 (𝑊)). Then we
know that 𝜋𝐼 ′ (𝑊) = R𝐼 ′ and for 𝑝 ∈ 𝜋𝐼 (𝑊) we can compute 𝐿𝑊𝐼 (𝑝) = 𝐿𝑊𝐼 ′ (𝑝𝐼 ′). Let
𝐵 ∈ R( [𝑛]\𝐼 )×𝐼 ′ be the matrix sending any 𝑞 ∈ 𝜋𝐼 ′ (𝑊) to the corresponding vector
(𝐿𝑊𝐼 ′ (𝑞)) [𝑛]\𝐼 . The column 𝐵𝑖 can be computed as (𝐿𝑊𝐼 ′ (𝑒𝑖𝐼 ′)) [𝑛]\𝐼 for 𝑒𝑖𝐼 ′ ∈ R𝐼 ′.
We have ‖𝐿𝑊𝐼 (𝑝)‖2 = ‖𝑝‖2 + ‖(𝐿𝑊𝐼 ′ (𝑝𝐼 ′)) [𝑛]\𝐼 ‖2 ≤ ‖𝑝‖2 + ‖𝐵‖2‖𝑝𝐼 ′ ‖2 for any

𝑝 ∈ 𝜋𝐼 (𝑊), and so ℓ𝑊 (𝐼) =
√
‖𝐿𝑊𝐼 ‖2 − 1 ≤ ‖𝐵‖. We upper bound the operator

norm by the Frobenius norm as ‖𝐵‖ ≤ ‖𝐵‖𝐹 =
√∑

𝑗𝑖 𝐵
2
𝑗𝑖 ≤ 𝑛max 𝑗𝑖 |𝐵 𝑗𝑖 |. By

Lemma 4.2.17 it follows that |𝐵 𝑗𝑖 | = | (𝐿𝑊𝐼 ′ (𝑒𝑖)) 𝑗 | ≤ 𝜅𝑊𝑖 𝑗 . The algorithm returns the
answer ‘pass’ if 𝑛max 𝑗𝑖 |𝐵 𝑗𝑖 | ≤ 𝜃 and ‘fail’ otherwise.

To implement the algorithm, we first need to select a minimal 𝐼 ′ ⊆ 𝐼 such that
dim(𝜋𝐼 ′ (𝑊)) = dim(𝜋𝐼 (𝑊)). This can be found by computing 𝑀 ∈ R(𝑛−𝑚)×𝑛
such that range(𝑀) = 𝑊 , and selecting a maximal number of linearly independent
columns of 𝑀𝐼 . Then, we compute the matrix 𝐵 ∈ R( [𝑛]\𝐼 )×𝐼 ′ that implements the
transformation [𝐿𝑊𝐼 ′ ] [𝑛]\𝐼 : 𝜋𝐼 ′ (𝑊) → 𝜋 [𝑛]\𝐼 (𝑊). The algorithm returns the pair
(𝑖, 𝑗) corresponding to the entry maximizing |𝐵 𝑗𝑖 |. The running time analysis will
be given in the proof of Lemma 4.3.15, together with an amortized analysis of a
sequence of calls to the subroutine. □

Remark 4.2.18. We note that the algorithm Verify-Lift does not need to compute
the circuit as in Lemma 4.2.17. The following observation will be important in the
analysis: the algorithm returns the answer ‘fail’ even if ℓ𝑊 (𝐼) ≤ 𝜃 < 𝑛|𝐵 𝑗𝑖 |.

We now prove the duality property of the circuit imbalances.

Lemma 4.2.10 (Repetition). For any subspace𝑊 ⊆ R𝑛 and 𝑖, 𝑗 ∈ [𝑛], 𝜅𝑊𝑖 𝑗 = 𝜅𝑊
⊥

𝑗𝑖 .

Proof. Choose a circuit𝐶 ∈ C𝑊 and corresponding circuit solution 𝑔 := 𝑔𝐶 ∈ 𝑊∩R𝑛𝐶
such that 𝜅𝑖 𝑗 = 𝜅𝑖 𝑗 (𝐶) = |𝑔 𝑗/𝑔𝑖 |. We will construct a circuit solution in 𝑊⊥ that
certifies 𝜅𝑊 ⊥𝑗𝑖 ≥ 𝜅𝑊𝑖 𝑗 .

Define ℎ ∈ R𝐶 by ℎ𝑖 = 𝑔 𝑗 , ℎ 𝑗 = −𝑔𝑖 and ℎ𝑘 = 0 for all 𝑘 ∈ 𝐶 \ {𝑖, 𝑗}. Then,
ℎ is orthogonal to 𝑔𝐶 by construction, and hence ℎ ∈ (𝜋𝐶 (𝑊 ∩ R𝑛𝐶))

⊥ = 𝜋𝐶 (𝑊⊥).
Furthermore, we have supp(ℎ) ∈ C𝜋𝐶 (𝑊 ⊥) since ℎ ∈ R𝐶 is a support minimal vector
orthogonal to 𝑔𝐶 .
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Take any vector ℎ̄ ∈ 𝑊⊥ satisfying ℎ̄𝐶 = ℎ that is support minimal subject to these
constraints. We claim that supp( ℎ̄) ∈ C𝑊 ⊥ . Assume not, then there exists a non-zero
𝑣 ∈ 𝑊⊥ with supp(𝑣) ⊆ supp( ℎ̄). Since supp(𝜋𝐶 (𝑣)) ⊆ supp(𝜋𝐶 ( ℎ̄)) = supp(ℎ),
we must have either 𝑣𝐶 = ®0 or 𝑣𝐶 = 𝑠ℎ for 𝑠 ≠ 0. If 𝑣𝐶 = ®0, then ℎ̄−𝛼𝑣 is also in𝑊⊥
satisfying 𝜋𝐶 ( ℎ̄𝐶 − 𝛼𝑣) = ℎ for all 𝛼 ∈ R, and since 𝑣 ≠ ®0 we can choose 𝛼 such that
ℎ̄ − 𝛼𝑣 has smaller support than ℎ̄, a contradiction. If 𝑠 ≠ 0 then 𝑣/𝑠 ∈ 𝑊⊥ satisfies
𝜋𝐶 (𝑣/𝑠) = ℎ and has smaller support than ℎ̄, again a contradiction.

By the above construction, we have

𝜅𝑊
⊥

𝑗𝑖 ≥
����� ℎ̄𝑖ℎ̄ 𝑗

����� = ���� ℎ𝑖ℎ 𝑗
���� = ����𝑔 𝑗𝑔𝑖

���� = 𝜅𝑊𝑖 𝑗 .
By swapping the role of𝑊 and𝑊⊥ and 𝑖 and 𝑗 , we obtain 𝜅𝑊𝑖 𝑗 ≥ 𝜅𝑊

⊥
𝑗𝑖 . The statement

follows. □

4.2.4 Proving the min-max theorem on 𝜅∗𝑊

The proof of the characterization of 𝜅∗𝑊 follows.

Theorem 4.2.13 (Repetition). For a subspace𝑊 ⊆ R𝑛, we have

𝜅∗𝑊 = min
𝑑>®0

𝜅𝑑𝑊 = max
{
𝜅𝑊 (𝐻)1/|𝐻 | : 𝐻 is a cycle in 𝐺

}
.

Proof. For the direction 𝜅𝑊 (𝐻)1/|𝐻 | ≤ 𝜅∗𝑊 we use (4.8). Let 𝑑 > ®0 be a scaling
and 𝐻 a cycle. We have 𝜅𝑑𝑖 𝑗 ≤ 𝜅𝑑𝑊 for every 𝑖, 𝑗 ∈ [𝑛], and hence 𝜅𝑊 (𝐻) =

𝜅𝑑𝑊 (𝐻) ≤ (𝜅𝑑𝑊 ) |𝐻 |. Since this inequality holds for every 𝑑 > ®0, it follows that
𝜅𝑊 (𝐻) ≤ (𝜅∗𝑊 ) |𝐻 |.

For the reverse direction, consider the following optimization problem.

min 𝑡
𝜅𝑖 𝑗𝑑 𝑗/𝑑𝑖 ≤ 𝑡 ∀(𝑖, 𝑗) ∈ 𝐸

𝑑 > ®0.
(4.9)

For any feasible solution (𝑑, 𝑡) and 𝜆 > 0, we get another feasible solution (𝜆𝑑, 𝑡)
with the same objective value. As such, we can strengthen the condition 𝑑 > ®0 to
𝑑 ≥ 1 without changing the objective value. This makes it clear that the optimum
value is achieved by a feasible solution.

Any rescaling 𝑑 > ®0 provides a feasible solution with objective value 𝜅𝑑 , which
means that the optimal value 𝑡∗ of (4.9) is 𝑡∗ = 𝜅∗. Moreover, with the variable
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substitution 𝑧𝑖 = log 𝑑𝑖 , 𝑠 = log 𝑡, (4.9) can be written as a linear program:

min 𝑠
log 𝜅𝑖 𝑗 + 𝑧 𝑗 − 𝑧𝑖 ≤ 𝑠 ∀(𝑖, 𝑗) ∈ 𝐸

𝑧 ∈ R𝑛.
(4.10)

This is the dual of a minimum-mean cycle problem with respect to the cost func-
tion log(𝜅𝑖 𝑗). Therefore, an optimal solution corresponds to the cycle maximizing∑
𝑖 𝑗∈𝐻 log 𝜅𝑖 𝑗/|𝐻 |, or in other words, maximizing 𝜅(𝐻)1/|𝐻 |. □

The following example shows that 𝜅∗ ≤ �̄�∗ can be arbitrarily big.

Example 4.2.19. Take 𝑊 = span((0, 1, 1, 𝑀), (1, 0, 𝑀, 1)), where 𝑀 > 0. Then
{2, 3, 4} and {1, 3, 4} are circuits with 𝜅𝑊34 ({2, 3, 4}) = 𝑀 and 𝜅𝑊43 ({1, 3, 4}) = 𝑀 .
Hence, by Theorem 4.2.13, we see that 𝜅∗ ≥ 𝑀 .

Corollary 4.2.14 (Repetition). Let us be given a linear subspace 𝑊 ⊆ R𝑛 and
𝑖, 𝑗 ∈ [𝑛], 𝑖 ≠ 𝑗 , and a circuit 𝐶 ∈ C𝑊 with 𝑖, 𝑗 ∈ 𝐶. Let 𝑔 ∈ 𝑊 be the corresponding
vector with supp(𝑔) = 𝐶. Then,

𝜅𝑊𝑖 𝑗(
𝜅∗𝑊

)2 ≤
|𝑔 𝑗 |
|𝑔𝑖 |
≤ 𝜅𝑊𝑖 𝑗 .

Proof. The second inequality follows by definition. For the first inequality, note that
the same circuit 𝐶 yields |𝑔𝑖/𝑔 𝑗 | ≤ 𝜅𝑊𝑗𝑖 (𝐶) ≤ 𝜅𝑊𝑗𝑖 . Therefore, |𝑔 𝑗/𝑔𝑖 | ≥ 1/𝜅𝑊𝑗𝑖 .

From Theorem 4.2.13 we see that 𝜅𝑊𝑖 𝑗 𝜅
𝑊
𝑗𝑖 ≤ (𝜅∗𝑊 )2, giving 1/𝜅𝑊𝑗𝑖 ≥ 𝜅𝑊𝑖 𝑗 /(𝜅∗𝑊 )2,

completing the proof. □

4.2.5 Finding circuits: a detour in matroid theory

We next prove Theorem 4.2.15, showing how to efficiently obtain a family Ĉ ⊆ C𝑊
such that for any 𝑖, 𝑗 ∈ [𝑛], Ĉ includes a circuit containing both 𝑖 and 𝑗 , provided
there exists such a circuit.

We need some simple concepts and results from matroid theory. We refer the
reader to [170, Chapter 39] or [83, Chapter 5] for definitions and background. Let
M = ( [𝑛], I) be a matroid on ground set [𝑛] with independent sets I ⊆ 2[𝑛] . The
rank rk(𝑆) of a set 𝑆 ⊆ [𝑛] is the maximum size of an independent set contained in 𝑆.
The maximal independent sets are called bases. All bases have the same cardinality
rk( [𝑛]).

For the matrix 𝐴 ∈ R𝑚×𝑛, we work with the linear matroid M(𝐴) = ( [𝑛], I (𝐴)),
where a subset 𝐼 ⊆ [𝑛] is independent if the columns {𝐴𝑖 : 𝑖 ∈ 𝐼} are linearly
independent. Note that rk( [𝑛]) = 𝑚 under the assumption that 𝐴 has full row rank.



134 4. A Scaling-Invariant Algorithm for Linear Programming

The circuits of the matroid are the inclusion-wise minimal non-independent sets.
Let 𝐼 ∈ I be an independent set, and 𝑖 ∈ [𝑛] \ 𝐼 such that 𝐼 ∪ {𝑖} ∉ I. Then, there
exists a unique circuit 𝐶 (𝐼, 𝑖) ⊆ 𝐼 ∪ {𝑖} that is called the fundamental circuit of 𝑖 with
respect to 𝐼. Note that 𝑖 ∈ 𝐶 (𝐼, 𝑖).

The matroid M is separable, if the ground set [𝑛] can be partitioned to two
nonempty subsets [𝑛] = 𝑆 ∪ 𝑇 such that 𝐼 ∈ I if and only if 𝐼 ∩ 𝑆, 𝐼 ∩ 𝑇 ∈ I. In this
case, the matroid is the direct sum of its restrictions to 𝑆 and 𝑇 . In particular, every
circuit is fully contained in 𝑆 or in 𝑇 .

For the linear matroid M(𝐴), separability means that Ker(𝐴) = Ker(𝐴𝑆) ⊕
Ker(𝐴𝑇 ). In this case, solving (4.1) can be decomposed into two subproblems,
restricted to the columns in 𝐴𝑆 and in 𝐴𝑇 , and 𝜅𝐴 = max{𝜅𝐴𝑆 , 𝜅𝐴𝑇 }.

Hence, we can focus on non-separable matroids. The following characterization
is well-known, see e.g. [83, Theorems 5.2.5, 5.2.7–5.2.9]. For a hypergraph 𝐻 =
([𝑛], E), we define the underlying graph 𝐻𝐺 = ([𝑛], 𝐸) such that (𝑖, 𝑗) ∈ 𝐸 if there
is a hyperedge 𝑆 ∈ E with 𝑖, 𝑗 ∈ 𝑆. That is, we add a clique corresponding to each
hyperedge. The hypergraph is called connected if the underlying graph 𝐺 = ([𝑛], 𝐸)
is connected.

Proposition 4.2.20. For a matroidM = ( [𝑛], I), the following are equivalent:

(i) M is non-separable.

(ii) The hypergraph of the circuits is connected.

(iii) For any base 𝐵 of M, the hypergraph formed by the fundamental circuits
C𝐵 = {𝐶 (𝐵, 𝑖) : 𝑖 ∈ [𝑛] \ 𝐵} is connected.

(iv) For any 𝑖, 𝑗 ∈ [𝑛], there exists a circuit containing 𝑖 and 𝑗 .

Proof. The implications (i)⇔ (ii), (iii)⇒ (ii), and (iv)⇒ (ii) are immediate from
the definitions.

For the implication (ii) ⇒ (iii), assume for a contradiction that the hypergraph
of the fundamental circuits with respect to 𝐵 is not connected. This means that
we can partition [𝑛] = 𝑆 ∪ 𝑇 such that for each 𝑖 ∈ 𝑆, 𝐶 (𝐵, 𝑖) ⊆ 𝑆, and for each
𝑖 ∈ 𝑇 , 𝐶 (𝐵, 𝑖) ⊆ 𝑇 . Consequently, rk(𝑆) = |𝐵 ∩ 𝑆 |, rk(𝑇) = |𝐵 ∩ 𝑇 |, and therefore
rk([𝑛]) = rk(𝑆) +rk(𝑇). It is easy to see that this property is equivalent to separability
to 𝑆 and 𝑇 ; see e.g. [83, Theorem 5.2.7] for a proof.

Finally, for the implication (ii) ⇒ (iv), consider the undirected graph ([𝑛], 𝐸)
where (𝑖, 𝑗) ∈ 𝐸 if there is a circuit containing both 𝑖 and 𝑗 . This graph is transitive
according to [83, Theorem 5.2.5]: if (𝑖, 𝑗), ( 𝑗 , 𝑘) ∈ 𝐸 , then also (𝑖, 𝑘) ∈ 𝐸 . Conse-
quently, whenever ( [𝑛], 𝐸) is connected, it must be a complete directed graph. □



4.2. Finding an approximately optimal rescaling 135

We now give a different proof of (iii) ⇒ (iv) that will be convenient for our
algorithmic purposes. First, we need a simple lemma that is commonly used in
matroid optimization, see e.g. [83, Lemma 13.1.11] or [170, Theorem 39.13].

Lemma 4.2.21. Let 𝐼 be an independent set of a matroid M = ( [𝑛], I), and 𝑈 =
{𝑢1, 𝑢2, . . . , 𝑢ℓ} ⊆ 𝐼,𝑉 = {𝑣1, 𝑣2, . . . , 𝑣ℓ} ⊆ [𝑛] \ 𝐼 such that 𝐼∪{𝑣𝑖} is dependent for
each 𝑖 ∈ [ℓ]. Further, assume that for each 𝑡 ∈ [ℓ], 𝑢𝑡 ∈ 𝐶 (𝐼, 𝑣𝑡 ) and 𝑢𝑡 ∉ 𝐶 (𝐼, 𝑣ℎ)
for all ℎ < 𝑡. Then, (𝐼 \𝑈) ∪𝑉 ∈ I.

We give a sketch of the proof. First, we note that for each 𝑡 ∈ [ℓ], 𝑢𝑡 ∈ 𝐶 (𝐼, 𝑣𝑡 )
means that exchanging 𝑣𝑡 for 𝑢𝑡 maintains independence. The statement follows by
induction on ℓ: we consider the independent set 𝐼 ′ = (𝐼 \ {𝑢ℓ}) ∪ {𝑣ℓ}. We can apply
induction for 𝐼 ′,𝑈 ′ = {𝑢1, 𝑢2, . . . , 𝑢ℓ−1}, and 𝑉 ′ = {𝑣1, 𝑣2, . . . , 𝑣ℓ−1}, noting that the
assumption guarantees that 𝐶 (𝐼 ′, 𝑣𝑡 ) = 𝐶 (𝐼, 𝑣𝑡 ) for all 𝑡 ∈ [ℓ − 1]. Based on this
lemma, we show the following exchange property.

Lemma 4.2.22. Let 𝐵 be a basis of the matroid M = ( [𝑛], I), and let 𝑈 =
{𝑢1, 𝑢2, . . . , 𝑢ℓ} ⊆ 𝐵, and 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣ℓ , 𝑣ℓ+1} ⊆ [𝑛] \ 𝐵. Assume 𝐶 (𝐵, 𝑣1) ∩
𝑈 = {𝑢1}, 𝐶 (𝐵, 𝑣ℓ+1) ∩𝑈 = {𝑢ℓ}, and for each 2 ≤ 𝑡 ≤ ℓ, 𝐶 (𝐵, 𝑣𝑡 ) ∩𝑈 = {𝑢𝑡−1, 𝑢𝑡 }.
Then (𝐵 \𝑈) ∪𝑉 contains a unique circuit 𝐶, and 𝑉 ⊆ 𝐶.

The situation described here corresponds to a minimal path in the hypergraph C𝐵
of the fundamental circuits with respect to a basis 𝐵. The hyperedges 𝐶 (𝐵, 𝑣𝑖) form
a path from 𝑣1 to 𝑣ℓ+1 such that no shortcut is possible (note that this is weaker than
requiring a shortest path).

Proof of Lemma 4.2.22. Note that 𝑆 = (𝐵 \ 𝑈) ∪ 𝑉 ∉ I since |𝑆 | > |𝐵| and 𝐵 is a
basis. For any 𝑖 ∈ [ℓ + 1], we can use Lemma 4.2.21 to show that

𝑆 \ {𝑣𝑖} = (𝐵 \𝑈) ∪ (𝑉 \ {𝑣𝑖}) ∈ I,

and thus 𝑆 \ {𝑣𝑖} is a basis. To see this, we apply Lemma 4.2.21 for the ordered sets
𝑉 ′ = {𝑣1, . . . , 𝑣𝑖−1, 𝑣ℓ+1, 𝑣ℓ , . . . , 𝑣𝑖+1} and𝑈 ′ = {𝑢1, . . . , 𝑢𝑖−1, 𝑢ℓ , 𝑢ℓ−1, . . . , 𝑢𝑖}.

Consequently, every circuit in 𝑆 must contain the entire set 𝑉 . The uniqueness of
the circuit in 𝑆 follows by the well-known circuit axiom asserting that if 𝐶,𝐶 ′ ∈ C,
𝐶 ≠ 𝐶 ′ and 𝑣 ∈ 𝐶∩𝐶 ′, then there exists a circuit𝐶 ′′ ∈ C such that𝐶 ′′ ⊆ (𝐶∪𝐶 ′)\{𝑣},
contradicting the claim that every circuit in 𝑆 contains the entire set 𝑉 . □

We are ready to describe the algorithm that will be used to obtain lower bounds
on all 𝜅𝑖 𝑗 values.

Theorem 4.2.15 (Repetition). Given 𝐴 ∈ R𝑚×𝑛, there exists an 𝑂 (𝑛2𝑚2) time algo-
rithm Find-Circuits(𝐴) that obtains a decomposition of M(𝐴) to a direct sum of
non-separable linear matroids, and returns a family Ĉ of circuits such that if 𝑖 and 𝑗
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are in the same non-separable component, then there exists a circuit in Ĉ containing
both 𝑖 and 𝑗 . Further, for each 𝑖 ≠ 𝑗 in the same component, the algorithm returns
a value 𝜅𝑖 𝑗 as the the maximum of |𝑔 𝑗/𝑔𝑖 | such that 𝑔 ∈ 𝑊 , supp(𝑔) = 𝐶 for some
𝐶 ∈ Ĉ containing 𝑖 and 𝑗 . For these values, 𝜅𝑖 𝑗 ≤ 𝜅𝑖 𝑗 ≤ (𝜅∗)2𝜅𝑖 𝑗 .

Proof. Once we have found the set of circuits Ĉ, and computed 𝜅𝑖 𝑗 as in the statement,
the inequalities 𝜅𝑖 𝑗 ≤ 𝜅𝑖 𝑗 ≤ (𝜅∗)2𝜅𝑖 𝑗 follow easily. The first inequality is by the
definition of 𝜅𝑖 𝑗 , and the second inequality is from Corollary 4.2.14.

We now turn to the computation of Ĉ. We first obtain a basis 𝐵 ⊆ [𝑛] of Ker(𝐴)
via Gauss-Jordan elimination in time 𝑂 (𝑛𝑚2). Recall the assumption that 𝐴 has full
row-rank. Let us assume that 𝐵 = [𝑚] is the set of first 𝑚 indices. The elimination
transforms it to the form 𝐴 = (𝐼𝑚 |𝐻), where 𝐻 ∈ R𝑚×(𝑛−𝑚) corresponds to the
non-basis elements. In this form, the fundamental circuit𝐶 (𝐵, 𝑖) is the support of the
𝑖th column of 𝐴 together with 𝑖 for every 𝑚 + 1 ≤ 𝑖 ≤ 𝑛. We let C𝐵 denote the set of
all these fundamental circuits.

We construct an undirected graph 𝐺 = (𝐵, 𝐸) as follows. For each 𝑖 ∈ [𝑛] \ 𝐵,
we add a clique between the nodes in 𝐶 (𝐵, 𝑖) \ {𝑖}. This graph can be constructed in
𝑂 (𝑛𝑚2) time.

The connected components of 𝐺 correspond to the connected components of C𝐵
restricted to 𝐵. Thus, due to the equivalence shown in Proposition 4.2.20 we can
obtain the decomposition by identifying the connected components of𝐺. For the rest
of the proof, we assume that the entire hypergraph is connected; connectivity can be
checked in 𝑂 (𝑚2) time.

We initialize Ĉ as C𝐵. We will then check all pairs 𝑖, 𝑗 ∈ [𝑛], 𝑖 ≠ 𝑗 . If no circuit
𝐶 ∈ Ĉ exists with 𝑖, 𝑗 ∈ 𝐶, then we will add such a circuit to Ĉ as follows.

Assume first 𝑖, 𝑗 ∈ [𝑛] \ 𝐵. We can find a shortest path in 𝐺 between the sets
𝐶 (𝐵, 𝑖) \ {𝑖} and 𝐶 (𝐵, 𝑗) \ { 𝑗} in time 𝑂 (𝑚2). This can be represented by the
sequences of points 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣ℓ+1} ⊆ [𝑛] \ 𝐵, 𝑣1 = 𝑖, 𝑣ℓ+1 = 𝑗 , and 𝑈 =
{𝑢1, 𝑢2, . . . , 𝑢ℓ} ⊆ 𝐵 as in Lemma 4.2.22. According to the lemma, 𝑆 = (𝐵 \𝑈) ∪𝑉
contains a unique circuit 𝐶 that contains all 𝑣𝑡 ’s, including 𝑖 and 𝑗 .

We now show how this circuit can be identified in 𝑂 (𝑚) time, along with the
vector 𝑔𝐶 . Let 𝐴𝑆 be the submatrix corresponding to the columns in 𝑆. Since 𝑔 = 𝑔𝐶

is unique up to scaling, we can set 𝑔𝑣1 = 1. Note that for each 𝑡 ∈ [ℓ], the row of
𝐴𝑆 corresponding to 𝑢𝑡 contains only two nonzero entries: 𝐴𝑢𝑡 𝑣𝑡 and 𝐴𝑢𝑡 𝑣𝑡+1 . Thus,
the value 𝑔𝑣1 = 1 can be propagated to assigning unique values to 𝑔𝑣2 , 𝑔𝑣3 , . . . , 𝑔𝑣ℓ+1 .
Once these values are set, there is a unique extension of 𝑔 to the indices 𝑡 ∈ 𝐵 ∩ 𝑆
in the basis. Thus, we have identified 𝑔 as the unique element of Ker(𝐴𝑆) up to
scaling. The circuit 𝐶 is obtained as supp(𝑔). Clearly, the above procedure can be
implemented in 𝑂 (𝑚) time.

The argument easily extends to finding circuits for the case {𝑖, 𝑗} ∩ 𝐵 ≠ ∅. If
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𝑖 ∈ 𝐵, then for any choice of 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣ℓ+1} and 𝑈 = {𝑢1, 𝑢2, . . . , 𝑢ℓ} as
in Lemma 4.2.22 such that 𝑖 ∈ 𝐶 (𝐵, 𝑣1) and 𝑖 ∉ 𝐶 (𝐵, 𝑣𝑡 ) for 𝑡 > 1, the unique
circuit in (𝐵 \ 𝑈) ∪ 𝑉 also contains 𝑖. This follows from Lemma 4.2.21 by taking
𝑉 ′ = {𝑣ℓ+1, 𝑣ℓ , . . . , 𝑣1} and𝑈 ′ = {𝑢ℓ , . . . , 𝑢1, 𝑖}, which proves that

𝑆 \ {𝑖} = (𝐵 \𝑈 ′) ∪𝑉 ′ ∈ I .

Similarly, if 𝑗 ∈ 𝐵 with 𝑗 ∈ 𝐶 (𝐵, 𝑣ℓ+1) and 𝑗 ∉ 𝐶 (𝐵, 𝑣𝑡 ) for 𝑡 < ℓ + 1, taking 𝑉 ′′ = 𝑉
and𝑈 ′′ = {𝑢1, . . . , 𝑢ℓ , 𝑗} gives 𝑆 \ { 𝑗} ∈ I.

The bottleneck for the running time is finding the shortest paths for the 𝑛(𝑛 − 1)
pairs, in time 𝑂 (𝑚2) each. □

The triangle inequality An interesting additional fact about the circuit ratio graph
is that the logarithm of the weights satisfy the triangle inequality. The proof uses
similar arguments as the proof of Theorem 4.2.15 above.

Lemma 4.2.16 (Repetition).

(i) For any distinct 𝑖, 𝑗 , 𝑘 in the same connected component of C𝑊 , and any 𝑔𝐶
with 𝑖, 𝑗 ∈ 𝐶, 𝐶 ∈ C𝑊 , there exist circuits 𝐶1, 𝐶2 ∈ C𝑊 , 𝑖, 𝑘 ∈ 𝐶1, 𝑗 , 𝑘 ∈ 𝐶2
such that |𝑔𝐶𝑗 /𝑔𝐶𝑖 | = |𝑔

𝐶2
𝑗 /𝑔

𝐶2
𝑘 | · |𝑔

𝐶1
𝑘 /𝑔

𝐶1
𝑖 |.

(ii) For any distinct 𝑖, 𝑗 , 𝑘 in the same connected component of C𝑊 , 𝜅𝑖 𝑗 ≤ 𝜅𝑖𝑘 · 𝜅𝑘 𝑗 .

Proof. Note that part (ii) immediately follows from part (i) when taking𝐶 ∈ C𝑊 such
that 𝜅𝑖 𝑗 (𝐶) = 𝜅𝑖 𝑗 . We now prove part (i).

Let 𝐴 ∈ R𝑚×𝑛 be a full-rank matrix with 𝑊 = Ker(𝐴). If 𝐶 = {𝑖, 𝑗}, then the
columns 𝐴𝑖 , 𝐴 𝑗 are linearly dependent. Writing 𝐴𝑖 = 𝜆𝐴 𝑗 , we have 𝜆 = −𝑔𝐶𝑗 /𝑔𝐶𝑖 .
Let ℎ be any circuit solution with 𝑖, 𝑘 ∈ supp(ℎ), and hence 𝑗 ∉ supp(ℎ). By
assumption, the vector ℎ′ = ℎ − ℎ𝑖𝑒𝑖 + 𝜆ℎ𝑖𝑒 𝑗 will satisfy 𝐴ℎ′ = ®0 and have 𝑖 ∉
supp(ℎ′), 𝑗 , 𝑘 ∈ supp(ℎ′). We know that ℎ′ is a circuit solution, because any circuit
𝐶 ′ ⊆ supp(ℎ′) could, by the above process in reverse, be used to produce a kernel
solution with strictly smaller support than ℎ, contradicting the assumption that ℎ is
a circuit solution. Now we have |ℎ′𝑗/ℎ′𝑘 | · |ℎ𝑘/ℎ𝑖 | = |ℎ′𝑗/ℎ𝑖 | = |𝜆 | by construction.
Thus, ℎ and ℎ′ are the circuit solutions we are looking for.

Now assume𝐶 ≠ {𝑖, 𝑗}. If 𝑘 ∈ 𝐶, the statement is trivially true with𝐶 = 𝐶1 = 𝐶2,
so assume 𝑘 ∉ 𝐶. Pick 𝑙 ∈ 𝐶, 𝑙 ∉ {𝑖, 𝑗} and set 𝐵 = 𝐶 \ {𝑙}. Assume without loss
of generality that 𝐵 ⊆ [𝑚] and apply row operations to 𝐴 such that 𝐴𝐵,𝐵 = 𝐼𝐵×𝐵 is
an identity submatrix and 𝐴[𝑛]\𝐵,𝐵 = 0. Then the column 𝐴𝑙 has support given by
𝐵, for otherwise 𝑔𝐶 could not be in the kernel. The given circuit solution satisfies
𝑔𝐶𝑡 = −𝐴𝑡 ,𝑙𝑔𝐶𝑙 for all 𝑡 ∈ 𝐵, and in particular 𝑔𝐶𝑗 /𝑔𝐶𝑖 = 𝐴 𝑗 ,𝑙/𝐴𝑖,𝑙 .
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Take any circuit solution ℎ ∈ Ker(𝐴) such that 𝑙, 𝑘 ∈ supp(ℎ) and such that
𝐶∪supp(ℎ) is inclusion-wise minimal. Such a vectors exists by Proposition 4.2.20(iv).
Now let 𝐽 = supp(ℎ) \𝐶. Because 𝐴[𝑛]\𝐵,𝐶 = 0 and 𝐴ℎ = ®0, we must have ®0 ≠ ℎ𝐽 ∈
Ker(𝐴[𝑛]\𝐵,𝐽 ). We show that we can uniquely lift any vector 𝑥 ∈ Ker(𝐴𝐵,𝐶∪{𝑘 }) to
a vector 𝑥 ′ ∈ Ker(𝐴𝐶∪𝐽 ) with 𝑥 ′𝐶∪𝑘 = 𝑥. Since this lift will send circuit solutions to
circuit solutions by uniqueness, it suffices to find our desired circuits as solutions to
the smaller linear system.

We first prove dim(Ker(𝐴[𝑛]\𝐵,𝐽 )) = 1. Suppose dim(Ker(𝐴[𝑛]\𝐵,𝐽 )) ≥ 2, then
|𝐽 | ≥ 2 and there would exist some vector 𝑦 ∈ Ker(𝐴[𝑛]\𝐵,𝐽 ) linearly independent
from ℎ𝐽 with 𝑘 ∈ supp(𝑦). This vector could be uniquely lifted to a vector �̄� ∈ Ker(𝐴),
and we could then find a linear combination ℎ + 𝛼�̄� such that supp(ℎ + 𝛼�̄�) ⊊ 𝐶 ∪ 𝐽
but 𝑙, 𝑘 ∈ supp(ℎ + 𝛼�̄�). The existence of such a vector contradicts the minimality of
𝐶 ∪ supp(ℎ). As such, we know that dim(Ker(𝐴[𝑛]\𝐵,𝐽 )) = 1.

This linear relation between any two entries in 𝐽 for any vector in Ker(𝐴[𝑛]\𝐵,𝐽 )
implies that we can apply row operations to 𝐴 such that 𝐴𝐵,𝐽 has non-zero entries only
in the column 𝐴𝐵, {𝑘 }. Note that these row operations leave 𝐴𝐶 unchanged because
𝐴[𝑛]\𝐵,𝐶 = 0. From this, we can see that any element in Ker(𝐴𝐵,𝐶∪{𝑘 }) can be
uniquely lifted to an element in Ker(𝐴𝐶∪𝐽 ). Hence we can focus on Ker(𝐴𝐵,𝐶∪{𝑘 }).
If 𝐴𝑖,𝑘 = 𝐴 𝑗 ,𝑘 = 0, then any 𝑥 ∈ Ker(𝐴𝐵,𝐶∪{𝑘 }) satisfies 𝑥𝑖 + 𝐴𝑖,𝑙𝑥𝑙 = 𝑥 𝑗 + 𝐴 𝑗 ,𝑙𝑥𝑙 = 0
and, in particular, any circuit 𝑙, 𝑘 ∈ �̄� ⊆ 𝐶 ∪ {𝑘} contains {𝑖, 𝑗} ⊆ �̄� and fulfills
|𝑔𝐶𝑗 /𝑔𝐶𝑖 | = |𝐴 𝑗 ,𝑙/𝐴𝑖,𝑙 | = |𝑔�̄�𝑗 /𝑔�̄�𝑖 | = |𝑔�̄�𝑗 /𝑔�̄�𝑘 | |𝑔

�̄�
𝑘 /𝑔

�̄�
𝑖 |. Choosing 𝐶1 = 𝐶2 = �̄�

concludes the case.
Otherwise we know that 𝐴𝑖,𝑘 ≠ 0 or 𝐴 𝑗 ,𝑘 ≠ 0, meaning that Ker(𝐴{𝑖, 𝑗 }, {𝑖, 𝑗 ,𝑙,𝑘 })

contains at least one circuit solution with 𝑘 in its support. Observe that any circuit
in Ker(𝐴{𝑖, 𝑗 }, {𝑖, 𝑗 ,𝑙,𝑘 }) can be lifted uniquely to an element in Ker(𝐴𝐵,𝐶∪{𝑘 }) since
𝐴𝐵,𝐵 is an identity matrix and we can set the entries of 𝐵\{𝑖, 𝑗} individually to satisfy
the equalities. Note that this lifted vector is a circuit as well, again by uniqueness
of the lift. Hence we may restrict our attention to the matrix 𝐴{𝑖, 𝑗 }, {𝑖, 𝑗 ,𝑙,𝑘 }. If
the columns 𝐴{𝑖, 𝑗 },𝑘 , 𝐴{𝑖, 𝑗 },𝑙 are linearly dependent, then any circuit solution to
𝐴{𝑖, 𝑗 }, {𝑖, 𝑗 ,𝑙 }𝑥 = 0, 𝑥𝑙 ≠ 0, such as 𝑔𝐶{𝑖, 𝑗 ,𝑙 }, is easily transformed into a circuit solution
to 𝐴{𝑖, 𝑗 }, {𝑖, 𝑗 ,𝑘 }𝑥 = ®0, 𝑥𝑘 ≠ 0 and we are done.

If 𝐴{𝑖, 𝑗 },𝑘 , 𝐴{𝑖, 𝑗 },𝑙 are independent, we can write 𝐴{𝑖, 𝑗 }, {𝑖, 𝑗 ,𝑙,𝑘 } =
( 1 0 𝑎 𝑐

0 1 𝑏 𝑑
)
,

where 𝑔𝐶𝑗 /𝑔𝐶𝑖 = 𝑏/𝑎. For 𝛼 = 𝑎𝑑 − 𝑏𝑐, which is non-zero since 𝛼 = det(( 𝑎 𝑐𝑏 𝑑 )) ≠ 0
by the independence assumption, we can check that (𝛼, 0,−𝑑, 𝑏) and (0, 𝛼, 𝑐,−𝑎) are
the circuits we are looking for. □
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4.2.6 Approximating �̄� and �̄�∗

Equipped with Theorem 4.2.13 and Theorem 4.2.15, we are ready to prove Theo-
rem 4.2.5. Recall that we defined 𝜅𝑑𝑖 𝑗 := 𝜅Diag(𝑑)𝑊

𝑖 𝑗 = 𝜅𝑖 𝑗𝑑 𝑗/𝑑𝑖 when 𝑑 > ®0. We can
similarly define 𝜅𝑑𝑖 𝑗 := 𝜅𝑖 𝑗𝑑 𝑗/𝑑𝑖 , and 𝜅𝑑𝑖 𝑗 approximates 𝜅𝑑𝑖 𝑗 just as in Theorem 4.2.15.

Theorem 4.2.5 (Repetition). There is an 𝑂 (𝑛2𝑚2 + 𝑛3) time algorithm that for any
matrix 𝐴 ∈ R𝑚×𝑛 computes an estimate 𝜉 of �̄�𝑊 such that

𝜉 ≤ �̄�𝑊 ≤ 𝑛( �̄�∗𝑊 )2𝜉

and a 𝐷 ∈ D such that
�̄�∗𝑊 ≤ �̄�𝑊𝐷 ≤ 𝑛( �̄�∗𝑊 )3 .

Proof. Let us run the algorithm Finding-Circuits(𝐴) described in Theorem 4.2.15
to obtain the values 𝜅𝑖 𝑗 such that 𝜅𝑖 𝑗 ≤ 𝜅𝑖 𝑗 ≤ (𝜅∗𝑊 )2𝜅𝑖 𝑗 . We let 𝐺 = ([𝑛], 𝐸) be the
circuit ratio digraph, that is, (𝑖, 𝑗) ∈ 𝐸 if 𝜅𝑖 𝑗 > 0.

To show the first statement on approximating �̄�, we simply set 𝜉 = max(𝑖, 𝑗) ∈𝐸 𝜅𝑖 𝑗 .
Then,

𝜉 ≤ 𝜅𝑊 ≤ �̄�𝑊 ≤ 𝑛𝜅𝑊 ≤ 𝑛(𝜅∗𝑊 )2𝜉 ≤ 𝑛( �̄�∗𝑊 )2𝜉

follows by Theorem 4.2.8.
For the second statement on finding a nearly optimal rescaling for �̄�∗𝑊 , we consider

the following optimization problem, which is an approximate version of (4.9) from
Theorem 4.2.13.

min 𝑡
𝜅𝑖 𝑗𝑑 𝑗/𝑑𝑖 ≤ 𝑡 ∀(𝑖, 𝑗) ∈ 𝐸

𝑑 > ®0.
(4.11)

Let 𝑑 be an optimal solution to (4.11) with value 𝑡. We will prove that 𝜅𝑑 ≤ (𝜅∗𝑊 )3.
First, observe that 𝜅𝑑𝑖 𝑗 = 𝜅𝑖 𝑗𝑑 𝑗/𝑑𝑖 ≤ (𝜅∗𝑊 )2𝜅𝑖 𝑗𝑑 𝑗/𝑑𝑖 ≤ (𝜅∗𝑊 )2𝑡 for any (𝑖, 𝑗) ∈ 𝐸 .

Now, let 𝑑∗ > ®0 be such that 𝜅𝑑∗ = 𝜅∗𝑊 . The vector 𝑑∗ is a feasible solution to (4.11),
and so 𝑡 ≤ max𝑖≠ 𝑗 𝜅𝑖 𝑗𝑑∗𝑗/𝑑∗𝑖 ≤ max𝑖≠ 𝑗 𝜅𝑖 𝑗𝑑∗𝑗/𝑑∗𝑖 = 𝜅𝑑

∗ . Hence we find that 𝑑 gives a
rescaling with

�̄�𝑊 �̂� ≤ 𝑛𝜅
𝑑 ≤ 𝑛(𝜅∗𝑊 )3 ≤ 𝑛( �̄�𝑊 )3 ,

where we again used Theorem 4.2.8.
We can obtain the optimal value 𝑡 of (4.11) by solving the corresponding

maximum-mean cycle problem (see Theorem 4.2.13). It is easy to develop a mul-
tiplicative version of the standard dynamic programming algorithm of the classical
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minimum-mean cycle problem (see e.g. [4, Theorem 5.8]) that allows finding the
optimum to (4.11) directly, in the same 𝑂 (𝑛3) time.

It is left to find the labels 𝑑𝑖 > 0, 𝑖 ∈ [𝑛] such that 𝜅𝑖 𝑗𝑑 𝑗/𝑑𝑖 ≤ 𝑡 for all
(𝑖, 𝑗) ∈ 𝐸 . We define the following weighted directed graph. We associate the weight
𝑤𝑖 𝑗 = log 𝑡− log 𝜅𝑖 𝑗 with every (𝑖, 𝑗) ∈ 𝐸 , and add an extra source vertex 𝑟 with edges
(𝑟, 𝑖) of weight 𝑤𝑟𝑖 = 0 for all 𝑖 ∈ [𝑛].

By the choice of 𝑡, this graph does not contain any negative weight directed cycles.
We can compute the shortest paths from 𝑟 to all nodes in 𝑂 (𝑛3) using the Bellman-
Ford algorithm; let 𝜎𝑖 be the shortest path label for 𝑖. We then set 𝑑𝑖 = exp(𝜎𝑖). One
can avoid computing logarithms by using a multiplicative variant of the Bellman-Ford
algorithm instead.

The running time of the whole algorithm will be bounded by 𝑂 (𝑛2𝑚2 + 𝑛3). The
running time is dominated by the𝑂 (𝑛2𝑚2) complexity of Finding-Circuits(𝐴) and
the𝑂 (𝑛3) complexity of solving the minimum-mean cycle problem and shortest path
computation. □

4.3 A scaling-invariant layered least squares interior-point algorithm

4.3.1 Preliminaries on interior-point methods

In this section, we introduce the standard definitions, concepts and results from the
interior-point literature that will be required for our algorithm. We consider an LP
problem in the form (4.1), or equivalently, in the subspace form (4.3) for𝑊 = Ker(𝐴).
We let

P++ = {𝑥 ∈ R𝑛 : 𝐴𝑥 = 𝑏, 𝑥 > ®0} , D++ = {(𝑦, 𝑠) ∈ R𝑚+𝑛 : 𝐴T𝑦 + 𝑠 = 𝑐, 𝑠 > ®0} .

Recall the central path defined in (CP), with 𝑤(𝜇) = (𝑥(𝜇), 𝑦(𝜇), 𝑠(𝜇)) denoting the
central path point corresponding to 𝜇 > 0. We let 𝑤∗ = (𝑥∗, 𝑦∗, 𝑠∗) denote the primal
and dual optimal solutions to (4.1) that correspond to the limit of the central path for
𝜇→ 0.

For a point𝑤 = (𝑥, 𝑦, 𝑠) ∈ P++×D++, the normalized duality gap is 𝜇(𝑤) = 𝑥T𝑠/𝑛.
The ℓ2-neighborhood of the central path with opening 𝛽 > 0 is the set

N (𝛽) =
{
𝑤 ∈ P++ ×D++ : ‖ 𝑥𝑠

𝜇(𝑤) −
®1‖ ≤ 𝛽

}
Throughout the chapter, we will assume 𝛽 is chosen from (0, 1/4]; in Algorithm 4
we use the value 𝛽 = 1/8. The following proposition gives a bound on the distance
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between 𝑤 and 𝑤(𝜇) if 𝑤 ∈ N (𝛽). See e.g. [100, Lemma 5.4], [146, Proposition
2.1].

Proposition 4.3.1. Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ N (𝛽) for 𝛽 ∈ (0, 1/4] and 𝜇 = 𝜇(𝑤), and
consider the central path point 𝑤(𝜇) = (𝑥(𝜇), 𝑦(𝜇), 𝑠(𝜇)). For each 𝑖 ∈ [𝑛],

𝑥𝑖
1 + 2𝛽

≤ 1 − 2𝛽
1 − 𝛽 · 𝑥𝑖 ≤ 𝑥𝑖 (𝜇) ≤

𝑥𝑖
1 − 𝛽 , and

𝑠𝑖
1 + 2𝛽

≤ 1 − 2𝛽
1 − 𝛽 · 𝑠𝑖 ≤ 𝑠𝑖 (𝜇) ≤

𝑠𝑖
1 − 𝛽 .

We will often use the following proposition which is immediate from definiton of
𝛽.

Proposition 4.3.2. Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ N (𝛽) for 𝛽 ∈ (0, 1/4], and 𝜇 = 𝜇(𝑤). Then
for each 𝑖 ∈ [𝑛]

(1 − 𝛽)√𝜇 ≤ √𝑠𝑖𝑥𝑖 ≤ (1 + 𝛽)
√
𝜇 .

Proof. By definition of N (𝛽) we have for all 𝑖 ∈ [𝑛] that | 𝑥𝑖𝑠𝑖𝜇 − 1| ≤ ‖ 𝑥𝑠𝜇 − ®1‖ ≤ 𝛽
and so (1 − 𝛽)𝜇 ≤ 𝑥𝑖𝑠𝑖 ≤ (1 + 𝛽)𝜇. Taking roots gives the results. □

A key property of the central path is “near monotonicity”, formulated in the
following lemma, see [198, Lemma 16].

Lemma 4.3.3. Let 𝑤 = (𝑥, 𝑦, 𝑠) be a central path point for 𝜇 and 𝑤′ = (𝑥 ′, 𝑦′, 𝑠′) be
a central path point for 𝜇′ ≤ 𝜇. Then ‖𝑥 ′/𝑥 + 𝑠′/𝑠‖∞ ≤ 𝑛. Further, for the optimal
solution 𝑤∗ = (𝑥∗, 𝑦∗, 𝑠∗) corresponding to the central path limit 𝜇 → 0, we have
‖𝑥∗/𝑥‖1 + ‖𝑠∗/𝑠‖1 = 𝑛.

Proof. We show that ‖𝑥 ′/𝑥‖1 + ‖𝑠′/𝑠‖1 ≤ 2𝑛 for any feasible primal 𝑥 ′ and dual
(𝑦′, 𝑠′) such that (𝑥 ′)T𝑠′ ≤ 𝑥T𝑠 = 𝑛𝜇; this implies the first statement with the weaker
bound 2𝑛. For the stronger bound ‖𝑥 ′/𝑥 + 𝑠′/𝑠‖∞ ≤ 𝑛, see the proof of [198, Lemma
16]. Since 𝑥 − 𝑥 ′ ∈ 𝑊 and 𝑠 − 𝑠′ ∈ 𝑊⊥, we have (𝑥 − 𝑥 ′)T (𝑠 − 𝑠′) = ®0. This can be
rewritten as 𝑥T𝑠′ + (𝑥 ′)T𝑠 = 𝑥T𝑠 + (𝑥 ′)T𝑠′. By our assumption on 𝑥 ′ and 𝑠′, the right
hand side is bounded by 2𝑛𝜇. Dividing by 𝜇, and noting that 𝑥𝑖𝑠𝑖 = 𝜇 for all 𝑖 ∈ [𝑛],
we obtain 



𝑥 ′𝑥 





1
+





 𝑠′𝑠 




1
=

𝑛∑
𝑖=1

𝑥 ′𝑖
𝑥𝑖
+
𝑠′𝑖
𝑠𝑖
≤ 2𝑛 .

The second statement follows by using this to central path points (𝑥 ′, 𝑦′, 𝑠′) with
parameter 𝜇′, and taking the limit 𝜇′→ 0. □
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4.3.2 The affine scaling and layered-least-squares steps

Given 𝑤 = (𝑥, 𝑦, 𝑠) ∈ P++ × D++, the search directions commonly used in interior-
point methods are obtained as the solution (Δ𝑥,Δ𝑦,Δ𝑠) to the following linear system
for some 𝜎 ∈ [0, 1].

𝐴Δ𝑥 = ®0 (4.12)

𝐴TΔ𝑦 + Δ𝑠 = ®0 (4.13)

𝑠Δ𝑥 + 𝑥Δ𝑠 = 𝜎𝜇®1 − 𝑥𝑠 (4.14)

Predictor-corrector methods, such as the Mizuno-Todd-Ye Predictor-Corrector (MTY
P-C) algorithm [145], alternate between two types of steps. In predictor steps, we use
𝜎 = 0. This direction is also called the affine scaling direction, and will be denoted
as Δ𝑤a = (Δ𝑥a,Δ𝑦a,Δ𝑠a) throughout. In corrector steps, we use 𝜎 = 1. This gives
the centrality direction, denoted as Δ𝑤c = (Δ𝑥c,Δ𝑦c,Δ𝑠c).

In the predictor steps, we make progress along the central path. Given the search
direction on the current iterate 𝑤 = (𝑥, 𝑦, 𝑠) ∈ N (𝛽), the step-length is chosen
maximal such that we remain in N (2𝛽), i.e.

𝛼a := sup{𝛼 ∈ [0, 1] : ∀𝛼′ ∈ [0, 𝛼] : 𝑤 + 𝛼′Δ𝑤a ∈ N (2𝛽)}.

Thus, we obtain a point 𝑤+ = 𝑤 + 𝛼aΔ𝑤a ∈ N (2𝛽). The corrector step finds a next
iterate 𝑤𝑐 = 𝑤a + Δ𝑤c, where Δ𝑤c is the centrality direction computed at 𝑤a. The
next proposition summarizes well-known properties, see e.g. [202, Section 4.5.1].

Proposition 4.3.4. Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ N (𝛽) for 𝛽 ∈ (0, 1/4].

(i) For the affine scaling step, we have 𝜇(𝑤+) = (1 − 𝛼)𝜇(𝑤).

(ii) The affine scaling step-length is

𝛼a ≥ max
{
𝛽
√
𝑛
, 1 − ‖Δ𝑥

aΔ𝑠a‖
𝛽𝜇(𝑤)

}
.

(iii) For𝑤+ ∈ N (2𝛽), and𝑤c = 𝑤++Δ𝑤c, we have 𝜇(𝑤c) = 𝜇(𝑤+) and𝑤c ∈ N (𝛽).

(iv) After a sequence of 𝑂 (√𝑛𝑡) predictor and corrector steps, we obtain an iterate
𝑤′ = (𝑥 ′, 𝑦′, 𝑠′) ∈ N (𝛽) such that 𝜇(𝑤′) ≤ 𝜇(𝑤)/2𝑡 .
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Minimum norm viewpoint and residuals For any point 𝑤 = (𝑥, 𝑦, 𝑠) ∈ P++×D++
we define

𝛿 = 𝛿(𝑤) = 𝑠1/2𝑥−1/2 ∈ R𝑛. (4.15)

With this notation, we can write (4.14) for 𝜎 = 0 in the form

𝛿Δ𝑥 + 𝛿−1Δ𝑠 = −𝑠1/2𝑥1/2 . (4.16)

Note that for a point 𝑤(𝜇) = (𝑥(𝜇), 𝑦(𝜇), 𝑠(𝜇)) on the central path, we have
𝛿𝑖 (𝑤(𝜇)) = 𝑠𝑖 (𝜇)/

√
𝜇 =

√
𝜇/𝑥𝑖 (𝜇) for all 𝑖 ∈ [𝑛]. From Proposition 4.3.1, we

see that if 𝑤 ∈ N (𝛽), and 𝜇 = 𝜇(𝑤), then for each 𝑖 ∈ [𝑛],√
1 − 2𝛽 · 𝛿𝑖 (𝑤(𝜇)) ≤ 𝛿𝑖 (𝑤) ≤

1√
1 − 2𝛽

· 𝛿𝑖 (𝑤(𝜇)) . (4.17)

The matrix Diag(𝛿(𝑤)) will be often used for rescaling in the algorithm. That is,
for the current iterate 𝑤 = (𝑥, 𝑦, 𝑠) in the interior-point method, we will perform
projections in the space Diag(𝛿(𝑤))𝑊 . To simplify notation, for 𝛿 = 𝛿(𝑤), we use
𝐿 𝛿𝐼 and 𝜅 𝛿𝑖 𝑗 as shorthands for 𝐿Diag(𝛿)𝑊

𝐼 and 𝜅Diag(𝛿)𝑊
𝑖 𝑗 . The subspace 𝑊 = Ker(𝐴)

will be fixed throughout.
It is easy to see from the optimality conditions that the components of the affine

scaling direction Δ𝑤a = (Δ𝑥a,Δ𝑦a,Δ𝑠a) are the optimal solutions of the following
minimum-norm problems.

Δ𝑥a = arg minΔ𝑥∈R𝑛{‖𝛿(𝑥 + Δ𝑥)‖2 : 𝐴Δ𝑥 = ®0}
(Δ𝑦a,Δ𝑠a) = arg min(Δ𝑦,Δ𝑠) ∈R𝑚×R𝑛{‖𝛿−1(𝑠 + Δ𝑠)‖2 : 𝐴TΔ𝑦 + Δ𝑠 = ®0}

(4.18)

Following [147], for a search direction Δ𝑤 = (Δ𝑥,Δ𝑦,Δ𝑠), we define the residuals as

Rx :=
𝛿(𝑥 + Δ𝑥)
√
𝜇

, Rs :=
𝛿−1(𝑠 + Δ𝑠)
√
𝜇

. (4.19)

We let Rxa and Rsa denote the residuals for the affine scaling direction Δ𝑤a. Hence,
the primal affine scaling direction Δ𝑥a is the one that minimizes the ℓ2-norm of the
primal residual Rxa, and the dual affine scaling direction (Δ𝑦a,Δ𝑠a) minimizes the
ℓ2-norm of the dual residual Rsa. The next lemma summarizes simple properties of
the residuals, see [147].

Lemma 4.3.5. For 𝛽 ∈ (0, 1/4] such that 𝑤 = (𝑥, 𝑦, 𝑠) ∈ N (𝛽) and the affine scaling
direction Δ𝑤 = (Δ𝑥a,Δ𝑦a,Δ𝑠a), we have
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(i)

RxaRsa =
Δ𝑥aΔ𝑠a

𝜇
, Rxa + Rsa =

𝑥1/2𝑠1/2
√
𝜇

, (4.20)

(ii)
‖Rxa‖2 + ‖Rsa‖2 = 𝑛 ,

(iii) We have ‖Rxa‖, ‖Rsa‖ ≤ √𝑛, and for each 𝑖 ∈ [𝑛], max{Rxa
𝑖 ,Rsa

𝑖 } ≥ 1
2 (1 − 𝛽).

(iv)
Rxa = − 1

√
𝜇
𝛿−1Δ𝑠a, Rsa = − 1

√
𝜇
𝛿Δ𝑥a .

Proof. Parts (i) and (iv) are immediate from the definitions and from (4.12)-(4.14)
and (4.16). In part (ii), we use part (i) and (Rxa)TRsa = 0. In part, (iii), the
first statement follows by part (ii), and the second statement follows from (i) and
Proposition 4.3.2. □

For a subset 𝐼 ⊆ [𝑛], we define

𝜀a
𝐼 (𝑤) := max

𝑖∈𝐼
min{|Rxa

𝑖 |, |Rsa
𝑖 |} , and 𝜀a(𝑤) := 𝜀a

[𝑛] (𝑤) . (4.21)

The next claim shows that for the affine scaling direction, a small 𝜀(𝑤) yields a
long step; see [147, Lemma 2.5].

Lemma 4.3.6. Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ N (𝛽) for 𝛽 ∈ (0, 1/4]. Then for the affine scaling
step, we have

𝜇(𝑤 + 𝛼aΔ𝑤a)
𝜇(𝑤) ≤ min

{
1 − 𝛽
√
𝑛
,

√
𝑛𝜀a(𝑤)
𝛽

}
.

Proof. Let 𝜀 := 𝜀a(𝑤). From Lemma 4.3.5(i), we get ‖Δ𝑥aΔ𝑠a‖/𝜇 = ‖RxaRsa‖. We
can bound ‖RxaRsa‖ ≤ 𝜀(‖Rxa‖ + ‖Rsa‖) ≤ 𝜀√𝑛, where the latter inequality follows
by Lemma 4.3.5(iii). From Proposition 4.3.4(ii), we get 𝛼a ≥ max{𝛽/√𝑛, 1−√𝑛𝜀/𝛽}.
The claim follows by part (i) of the same proposition. □

The layered-least-squares direction

Let J = (𝐽1, 𝐽2, . . . , 𝐽𝑝) be an ordered partition of [𝑛].2 For 𝑘 ∈ [𝑝], we use the
notations 𝐽<𝑘 := 𝐽1 ∪ . . . ∪ 𝐽𝑘−1, 𝐽>𝑘 := 𝐽𝑘+1 ∪ . . . ∪ 𝐽𝑝, and similarly 𝐽≤𝑘 and 𝐽≥𝑘 .

2In contrast to how ordered partitions were defined in [147], we use the term ordered only to the
𝑝-tuple (𝐽1, . . . , 𝐽𝑝), which is to be viewed independently of 𝛿.
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We will also refer to the sets 𝐽𝑘 as layers, and J as a layering. Layers with lower
indices will be referred to as ‘higher’ layers.

Given 𝑤 = (𝑥, 𝑦, 𝑠) ∈ P++ × D++, and the layering J , the layered-least-squares
(LLS) direction is defined as follows. For the primal direction, we proceed backwards,
with 𝑘 = 𝑝, 𝑝 − 1, . . . , 1. Assume the components on the lower layers Δ𝑥ll

𝐽>𝑘
have

already been determined. We define the components in 𝐽𝑘 as the coordinate projection
Δ𝑥ll

𝐽𝑘
= 𝜋𝐽𝑘 (𝑋𝑘), where the affine subspace 𝑋𝑘 is defined as the set of minimizers

𝑋𝑘 := arg min
Δ𝑥∈R𝑛

{

𝛿𝐽𝑘 (𝑥𝐽𝑘 + Δ𝑥𝐽𝑘 )

2 : 𝐴Δ𝑥 = ®0,Δ𝑥𝐽>𝑘 = Δ𝑥ll
𝐽>𝑘

}
. (4.22)

The dual direction Δ𝑠ll is determined in the forward order of the layers 𝑘 = 1, 2, . . . , 𝑝.
Assume we have already fixed the components Δ𝑠ll𝐽<𝑘

on the higher layers. Then,
Δ𝑠ll𝐽𝑘 = 𝜋𝐽𝑘 (𝑆𝑘) for

𝑆𝑘 = arg min
Δ𝑠∈R𝑛

{


𝛿−1
𝐽𝑘
(𝑠𝐽𝑘 + Δ𝑠𝐽𝑘 )




2
: ∃𝑦 ∈ R𝑚, 𝐴TΔ𝑦 + Δ𝑠 = ®0,Δ𝑠𝐽<𝑘 = Δ𝑠ll𝐽<𝑘

}
.

(4.23)

The component Δ𝑦ll is obtained as the optimal Δ𝑦 for the final layer 𝑘 = 𝑝. We use
the notation Rxll and 𝜀ll(𝑤) analogously to the affine scaling direction. This search
direction was first introduced in [198].

The affine scaling direction is a special case for the single element partition. In
this case, the definitions (4.22) and (4.23) coincide with those in (4.18).

4.3.3 Overview of ideas and techniques

A key technique in the analysis of layered least-squares algorithms [129, 146, 198] is
to argue about variables that have ‘converged’. According to Proposition 4.3.1 and
Lemma 4.3.3, for any iterate 𝑤 = (𝑥, 𝑦, 𝑠) ∈ N (𝛽) and the limit optimal solution
𝑤∗ = (𝑥∗, 𝑦∗, 𝑠∗), the bounds 𝑥∗𝑖 ≤ 𝑂 (𝑛)𝑥𝑖 and 𝑠∗𝑖 ≤ 𝑂 (𝑛)𝑠𝑖 hold. We informally say
that 𝑥𝑖 (or 𝑠𝑖) has converged, if 𝑥𝑖 ≤ 𝑂 (𝑛)𝑥∗𝑖 (𝑠𝑖 ≤ 𝑂 (𝑛)𝑠∗𝑖 ) hold for the current iterate
or for any earlier iterate. Thus, the value of 𝑥𝑖 (or 𝑠𝑖) remains within a multiplicative
factor𝑂 (𝑛2) for the rest of the algorithm. Note that if 𝜇 > 𝜇′ and 𝑥𝑖 has converged at
𝜇, then 𝑠𝑖 (𝜇′)/𝑠𝑖 (𝜇)

𝜇′/𝜇 ∈
[

1
𝑂 (𝑛2) , 𝑂 (𝑛

2)
]
; thus, 𝑠𝑖 keeps “shooting down” with the central

path parameter.

Converged variables in the affine scaling algorithm Let us start by showing that
at any point of the algorithm, at least one primal or dual variable has converged.
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Suppose for simplicity that our current iterate is exactly on the central path, i.e.,
that 𝑥𝑠 = 𝜇®1. This assumption will be maintained throughout this overview. In this
case, the residuals can be simply written as Rxa = (𝑥 + Δ𝑥a)/𝑥, Rsa = (𝑠 + Δ𝑠a)/𝑠.
Recall from (4.18) that the affine scaling direction corresponds to minimizing the
residuals Rxa and Rsa. From this choice, we see that



𝑥∗𝑥 



 ≥ 



𝑥 + Δ𝑥a

𝑥





 , 



 𝑠∗𝑠 



 ≥ 



 𝑠 + Δ𝑠a𝑠





 . (4.24)

We have ‖Rxa‖2+ ‖Rsa‖2 = 𝑛 by Lemma 4.3.5(ii). Let us assume ‖Rxa‖2 ≥ 𝑛/2; thus,
there exists a 𝑖 ∈ [𝑛] such that 𝑥∗𝑖 ≥ 𝑥𝑖/

√
2. In other words, just by looking at the

residuals, we get the guarantee that a primal or a dual variable has already converged.
Based on the value of the residuals, we can guarantee this to be a primal or a dual
variable, but cannot identify which particular 𝑥𝑖 or 𝑠𝑖 this might be.

For ‖Rxa‖2 ≥ 𝑛/2, a primal variable has already converged before performing
the predictor and corrector steps. We now show that even if ‖Rxa‖ is small, a
primal variable will have converged after a single iteration. From (4.24), we see that
there is an index 𝑖 with 𝑥∗𝑖 /𝑥𝑖 ≥ ‖Rxa‖/√𝑛. Furthermore, Proposition 4.3.4(ii) and
Lemma 4.3.5 imply that 1 − 𝛼 ≤ ‖Rxa‖ · ‖Rsa‖/𝛽 ≤ √𝑛‖Rxa‖/𝛽, since ‖Rsa‖ ≤ √𝑛.
The predictor step moves to 𝑥+ := 𝑥 + 𝛼Δ𝑥a = (1 − 𝛼)𝑥 + 𝛼(𝑥 + Δ𝑥a). Hence, 𝑥+ ≤(√

𝑛‖Rxa ‖
𝛽 + ‖Rxa‖

)
𝑥. Putting the two inequalities together, we learn that 𝑥+𝑖 ≤ 𝑂 (𝑛)𝑥∗𝑖

for some 𝑖 ∈ [𝑛]. Since 𝑤+ = (𝑥+, 𝑦+, 𝑠+) ∈ N (2𝛽), Proposition 4.3.1 implies that 𝑥𝑖
will have converged after this iteration. An analogous argument proves that some 𝑠 𝑗
will also have converged after the iteration. We again emphasize that the argument
only shows the existence of converged variables but we cannot identify them in
general.

Measuring combinatorial progress Tying the above together, we find that after a
single affine scaling step, at least one primal variable 𝑥𝑖 and at least one dual variable
𝑠 𝑗 has converged. This means that for any 𝜇′ < 𝜇, 𝑥𝑖 (𝜇

′)/𝑥 𝑗 (𝜇′)
𝑥𝑖 (𝜇)/𝑥 𝑗 (𝜇) ∈

[
𝜇

𝑂 (𝑛4)𝜇′ ,
𝑂 (𝑛4)𝜇
𝜇′

]
;

thus, the ratio of these variables keeps asymptotically increasing. The 𝑥𝑖/𝑥 𝑗 ratios
serve as the main progress measure in the Vavasis–Ye algorithm. If 𝑥𝑖/𝑥 𝑗 is between
1/(poly(𝑛) �̄�) and poly(𝑛) �̄� before the affine scaling step for the pair of converged
variables 𝑥𝑖 and 𝑠 𝑗 , then after poly(𝑛) log �̄� iterations, the 𝑥𝑖/𝑥 𝑗 ratio must leave this
interval and never return. Thus, we obtain a ‘crossover-event’ that cannot again occur
for the same pair of variables. In the affine scaling algorithm, there is no guarantee
that 𝑥𝑖/𝑥 𝑗 falls in such a bounded interval for the converging variables 𝑥𝑖 and 𝑠 𝑗 ; in
particular, we may obtain the same pairs of converged variables after each step.
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The main purpose of layered-least-squares methods is to proactively force that in
every certain number of iterations, some ‘bounded’ 𝑥𝑖/𝑥 𝑗 ratios become ‘large’ and
remain so for the rest of the algorithm.

In our approach, the first main insight is to focus on the scaling invariant quantities
𝜅𝑊𝑖 𝑗 𝑥𝑖/𝑥 𝑗 instead. For simplicity’s sake, we first present the algorithm with the
assumption that all values 𝜅𝑊𝑖 𝑗 are known. We will then explain how this assumption
can be removed by using gradually improving estimates on the values.

The combinatorial progress will be observed in the ‘long edge graph’. For
a primal-dual feasible point 𝑤 = (𝑥, 𝑦, 𝑥) and 𝜎 = 1/𝑂 (𝑛6), this is defined as
𝐺𝑤,𝜎 = ([𝑛], 𝐸𝑤,𝜎) with edges (𝑖, 𝑗) such that 𝜅𝑊𝑖 𝑗 𝑥𝑖/𝑥 𝑗 ≥ 𝜎. Observe that for any
𝑖, 𝑗 ∈ [𝑛], at least one of (𝑖, 𝑗) and ( 𝑗 , 𝑖) are long edges: this follows since for any
circuit 𝐶 with 𝑖, 𝑗 ∈ 𝐶, we get lower bounds |𝑔𝐶𝑗 /𝑔𝐶𝑖 | ≤ 𝜅𝑊𝑖 𝑗 and |𝑔𝐶𝑖 /𝑔𝐶𝑗 | ≤ 𝜅𝑊𝑗𝑖 .

Intuitively, our algorithm will enforce the following two types of events. The
analysis in Section 4.4 is based on a potential function analysis capturing roughly the
same progress.

• For an iterate 𝑤 and a value 𝜇 > 0, we have 𝑖, 𝑗 ∈ [𝑛] in a strongly connected
component in 𝐺𝑤,𝜎 of size ≤ 𝜏, and for any iterate 𝑤′ with 𝜇(𝑤′) > 𝜇, if 𝑖, 𝑗
are in a strongly connected component of 𝐺𝑤′,𝜎 then this component has size
≥ 2𝜏.

• For an iterate 𝑤 and a value 𝜇 > 0, we have (𝑖, 𝑗) ∉ 𝐸𝑤,𝜎 , and for any iterate
𝑤′ with 𝜇(𝑤′) > 𝜇 we have (𝑖, 𝑗) ∈ 𝐸𝑤′,𝜎 .

At most𝑂 (𝑛2 log 𝑛) such events can happen overall, so if we can prove that on average
an event will happen every 𝑂 (√𝑛 log( �̄�∗𝐴 + 𝑛)) iterations or the algorithm terminates,
then we have the desired convergence bound of 𝑂 (𝑛2.5 log(𝑛) log( �̄�∗𝐴 + 𝑛)) iterations.

Converged variables cause combinatorial progress We now show that combina-
torial progress as above must happen in the affine scaling step in the case when the
graph𝐺𝑤,𝜎 is strongly connected. As noted above, for the pair of converged variables
𝑥𝑖 and 𝑠 𝑗 after the affine scaling step, 𝑥𝑖/𝑥 𝑗 , and thus 𝜅𝑊𝑖 𝑗 𝑥𝑖/𝑥 𝑗 , will asymptotically
increase by a factor 2 in every 𝑂 (√𝑛) iterations.

By the strong connectivity assumption, there is a directed path in the long edge
graph from 𝑖 to 𝑗 of length at most 𝑛 − 1. Each edge has length at least 𝜎, and by the
cycle characterization (Theorem 4.2.13) we know that (𝜅𝑊𝑗𝑖 𝑥 𝑗/𝑥𝑖) · 𝜎𝑛−1 ≤ (𝜅∗𝑊 )𝑛.
As such, 𝜅𝑊𝑗𝑖 𝑥 𝑗/𝑥𝑖 ≤ (𝜅∗𝑊 )𝑛/𝜎𝑛−1. Since 𝜅𝑊𝑖 𝑗 𝜅

𝑊
𝑗𝑖 ≤ (𝜅∗𝑊 )2 by the same theorem, we

obtain the lower bound 𝜅𝑊𝑖 𝑗 𝑥𝑖/𝑥 𝑗 ≥ 𝜎𝑛−1(𝜅∗𝑊 )−𝑛+2.
This means that after𝑂 (√𝑛 log((𝜅∗𝑊 /𝜎)𝑛)) = 𝑂 (𝑛1.5 log(𝜅∗𝑊 +𝑛)) affine scaling

steps, the weight of the edge (𝑖, 𝑗) will be more than (𝜅∗𝑊 /𝜎)4𝑛. There can never
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Figure 4.1: Top-down we have a chart of primal/dual variables and the estimated
subgraph of the circuit ratio digraph (Definition 4.3.11) for three different iterations:
1) All variables are far away from their optimal values. 2) On 𝐽1 there is a primal
variable (𝑖) and dual variable ( 𝑗) that have converged, i.e. 𝑥𝑖 is close to 𝑥∗𝑖 and 𝑠𝑖 is
close to 𝑠∗𝑖 . 3) 𝑗 moves to layer 𝐽2 due to a change in the underlying subgraph of the
circuit ratio digraph.

again be a length 𝑛 or shorter path from 𝑗 to 𝑖 in the long edge graph, for otherwise the
resulting cycle would violate Theorem 4.2.13. Moreover, by the triangle inequality
(Lemma 4.2.16), any other 𝑘 ≠ 𝑖, 𝑗 will have either (𝑖, 𝑘) or (𝑘, 𝑗) of length at
least (𝜅∗𝑊 /𝜎)2𝑛, similarly causing a pair of variables to never again be in the same
connected component. As such, we took𝑂 (𝑛1.5 log(𝜅∗𝑊 +𝑛)) affine scaling steps and
in that time at least 𝑛 − 1 combinatorial progress events have occured.

The layered least squares step Similarly to the Vavasis–Ye algorithm [198] and
subsequent literature, our algorithm is a predictor-corrector method using layered
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least squares (LLS) steps as in Section 4.3.2 for certain predictor iterations. Our
algorithm (Algorithm 4) uses LLS steps only sometimes, and most steps are the
simpler affine scaling steps; but for simplicity of this overview, we can assume every
predictor iteration uses an LLS step.

We define the ordered partitionJ = (𝐽1, 𝐽2, . . . , 𝐽𝑝) corresponding to the strongly
connected components in topological ordering. Recalling that either (𝑖, 𝑗) or ( 𝑗 , 𝑖)
is a long edge for every pair 𝑖, 𝑗 ∈ [𝑛], this order is unique and such that there is a
complete directed graph of long edges from every 𝐽𝑘 to 𝐽𝑘′ for 1 ≤ 𝑘 < 𝑘 ′ ≤ 𝑝.

The first important property of the LLS step is that it is very close to the affine
scaling step. In Section 4.3.4, we introduce the partition lifting cost ℓ𝑊 (J ) =
max2≤𝑘≤𝑝 ℓ𝑊 (𝐽≥𝑘) as the cost of lifting from lower to higher layers; we let ℓ1/𝑥 (J )
be a shorthand for ℓDiag(1/𝑥)𝑊 (J ). Note that this same rescaling is used for the affine
scaling step in (4.18), since 𝛿 = √𝜇/𝑥 if 𝑤 is on the central path. In Lemma 4.3.10(ii),
we show that for a small partition lifting cost, the LLS residuals will remain near the
affine scaling residuals. Namely,

‖Rxll − Rxa‖, ‖Rsll − Rsa‖ ≤ 6𝑛3/2ℓ1/𝑥 (J ) .

Recall that the LLS residuals can be written as Rxll = (𝑥 + Δ𝑥ll)/𝑥, Rsll = (𝑠 +Δ𝑠ll)/𝑠
for a point on the central path. For J defined as above, Lemma 4.2.11 yields
ℓ1/𝑥 (J ) ≤ 𝑛max𝑖∈𝐽>𝑘 , 𝑗∈𝐽≤𝑘 ,𝑘∈[𝑝] 𝜅

𝑊
𝑖 𝑗 𝑥𝑖/𝑥 𝑗 . This will be sufficiently small as this

maximum is taken over ‘short’ edges (not in 𝐸𝑤,𝜎).

A second, crucial property of the LLS step is that it “splits” our LP into 𝑝 separate
LPs that have “negligible” interaction. Namely, the direction (Δ𝑥ll

𝐽𝑘
,Δ𝑠ll𝐽𝑘 ) will be

very close to the affine scaling step obtained in the problem restricted to the subspace
𝑊J ,𝑘 = {𝑥𝐽𝑘 : 𝑥 ∈ 𝑊, 𝑥𝐽>𝑘 = ®0} (Lemma 4.3.10(i))

Since each component 𝐽𝑘 is strongly connected in the long edge graph 𝐺𝑤,𝜎 , if
there is at least one primal 𝑥𝑖 and dual 𝑠 𝑗 in 𝐽𝑘 that have converged after the LLS
step, we can use the above argument to show combinatorial progress regarding the
𝜅𝑊𝑖 𝑗 𝑥𝑖/𝑥 𝑗 value (Lemma 4.4.3).

Exploiting the proximity between LLS and affine scaling steps, Lemma 4.3.10(iv)
gives a lower bound on the step size 𝛼 ≥ 1 − 3

√
𝑛
𝛽 max𝑖∈[𝑛] min{|Rxll

𝑖 |, |Rsll
𝑖 |}. Let 𝐽𝑘

be the component where min{‖Rxll
𝐽𝑘
‖, ‖Rsll

𝐽𝑘
‖} is the largest. Hence, the step size 𝛼

can be lower bounded in terms of min{‖Rxll
𝐽𝑘
‖, ‖Rsll

𝐽𝑘
‖}.

The analysis now distinguishes two cases. Let𝑤+ = 𝑤+𝛼Δ𝑠ll be the point obtained
by the predictor LLS step. If the corresponding partition lifting cost ℓ1/𝑥+ (J ) is still
small, then a similar argument that has shown the convergence of primal and dual
variables in the affine scaling step will imply that after the LLS step, at least one
𝑥𝑖 and one 𝑠 𝑗 will have converged for 𝑖, 𝑗 ∈ 𝐽𝑘 . Thus, in this case we obtain the
combinatorial progress (Lemma 4.4.4).
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The remaining case is when ℓ1/𝑥+ (J ) becomes large. In Lemma 4.4.5, we show
that in this case a new edge will enter the long edge graph, corresponding to the second
combinatorial event listed previously. Intuitively, in this case one layer “crashes” into
another.

Refined estimates on circuit imbalances In the above overview, we assumed the
circuit imbalance values 𝜅𝑊𝑖 𝑗 are given, and thus the graph𝐺𝑤,𝜎 is available. Whereas
these quantities are difficult to compute, we can naturally work with lower estimates.
For each 𝑖, 𝑗 ∈ [𝑛] that are contained in a circuit together, we start with the lower
bound 𝜅𝑊𝑖 𝑗 = |𝑔𝐶𝑗 /𝑔𝐶𝑖 | obtained for an arbitrary circuit 𝐶 with 𝑖, 𝑗 ∈ 𝐶. We use the
graph �̂�𝑤,𝜎 = ( [𝑛], �̂�𝑤,𝜎) corresponding to these estimates. Clearly, �̂�𝑤,𝜎 ⊆ 𝐸𝑤,𝜎 ,
but some long edges may be missing. We determine the partition J of the strongly
connected components of �̂�𝑤,𝜎 and estimate the partition lifting cost ℓ1/𝑥 (J ). If this
is below the desired bound, the argument works correctly. Otherwise, we can identify
a pair 𝑖, 𝑗 responsible for this failure. Namely, we find a circuit 𝐶 with 𝑖, 𝑗 ∈ 𝐶 such
that 𝜅𝑊𝑖 𝑗 < |𝑔𝐶𝑗 /𝑔𝐶𝑖 |. In this case, we update our estimate, and recompute the partition;
this is described in Algorithm 3. At each LLS step, the number of updates is bounded
by 𝑛, since every update leads to a decrease in the number of partition classes. This
finishes the overview of the algorithm.

4.3.4 A linear system viewpoint of layered least squares

We now continue with the detailed exposition of our algorithm. We present an
equivalent definition of the LLS step introduced in Section 4.3.2, generalizing the
linear system (4.13)–(4.14). We use the subspace notation. With this notation,
(4.13)–(4.14) for the affine scaling direction can be written as

𝑠Δ𝑥a + 𝑥Δ𝑠a = −𝑥𝑠 , Δ𝑥a ∈ 𝑊 , and Δ𝑠a ∈ 𝑊⊥ , (4.25)

which is further equivalent to 𝛿Δ𝑥a + 𝛿−1Δ𝑠a = −𝑥1/2𝑠1/2.
Given the layering J and 𝑤 = (𝑥, 𝑦, 𝑠), for each 𝑘 ∈ [𝑝] we define the subspaces

𝑊J ,𝑘 := {𝑥𝐽𝑘 : 𝑥 ∈ 𝑊, 𝑥𝐽>𝑘 = ®0} and 𝑊⊥J ,𝑘 := {𝑥𝐽𝑘 : 𝑥 ∈ 𝑊⊥, 𝑥𝐽<𝑘 = ®0} .

It is easy to see that these two subspaces are orthogonal complements. Our next goal
is to show that, analogously to (4.25), the primal LLS step Δ𝑥ll is obtained as the
unique solution to the linear system

𝛿Δ𝑥ll + 𝛿−1Δ𝑠 = −𝑥1/2𝑠1/2 , Δ𝑥ll ∈ 𝑊 , and Δ𝑠 ∈ 𝑊⊥J ,1 ⊕ · · · ⊕𝑊
⊥
J , 𝑝 , (4.26)

and the dual LLS step Δ𝑠ll is the unique solution to

𝛿Δ𝑥 + 𝛿−1Δ𝑠ll = −𝑥1/2𝑠1/2 , Δ𝑥 ∈ 𝑊J ,1 ⊕ · · · ⊕𝑊J , 𝑝 , and Δ𝑠ll ∈ 𝑊⊥ . (4.27)
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It is important to note that Δ𝑠 in (4.26) may be different from Δ𝑠ll, and Δ𝑥 in (4.27)
may be different from Δ𝑥ll. In fact, Δ𝑠ll = Δ𝑠 and Δ𝑥ll = Δ𝑥 can only be the case for
the affine scaling step.

The following lemma proves that the above linear systems are indeed uniquely
solved by the LLS step.

Lemma 4.3.7. For 𝑡 ∈ R𝑛, 𝑊 ⊆ R𝑛, 𝛿 ∈ R𝑛++, and J = (𝐽1, 𝐽2, . . . , 𝐽𝑝), let
𝑤 = LLS𝑊 ,𝛿

J (𝑡) be defined by

𝛿𝑤 + 𝛿−1𝑣 = 𝛿𝑡, 𝑤 ∈ 𝑊, 𝑣 ∈ 𝑊⊥J ,1 ⊕ · · · ⊕𝑊
⊥
J , 𝑝 .

Then LLS𝑊 ,𝛿
J (𝑡) is well-defined and

‖𝛿𝐽𝑘 (𝑡𝐽𝑘 − 𝑤𝐽𝑘 )‖ = min{‖𝛿𝐽𝑘 (𝑡𝐽𝑘 − 𝑧𝐽𝑘 )‖ : 𝑧 ∈ 𝑊, 𝑧𝐽>𝑘 = 𝑤𝐽>𝑘 }

for every 𝑘 ∈ [𝑝].
In the notation of the above lemma, for ordered partitions J = (𝐽1, 𝐽2, . . . , 𝐽𝑝),

J̄ = (𝐽𝑝, 𝐽𝑝−1, . . . , 𝐽1), and (𝑥, 𝑦, 𝑠) ∈ P++ × D++ with 𝛿 = 𝑠1/2𝑥−1/2, we have
Δ𝑥ll = LLS𝑊 ,𝛿

J (−𝑥) and Δ𝑠ll = LLS𝑊
⊥, 𝛿−1

J̄ (−𝑠).

Proof of Lemma 4.3.7. We first prove the equality𝑊 ∩ (𝑊⊥J ,1 ⊕ · · · ⊕𝑊
⊥
J , 𝑝) = {®0},

and by a similar argument we have 𝑊⊥ ∩ (𝑊J ,1 ⊕ · · · ⊕ 𝑊J , 𝑝) = {®0}. By duality,
this last equality tells us that

(𝑊⊥ ∩ (𝑊J ,1 ⊕ · · · ⊕𝑊J , 𝑝))⊥ = 𝑊 + (𝑊⊥J ,1 ⊕ · · · ⊕𝑊
⊥
J , 𝑝) = R𝑛.

Thus, the linear decomposition defining LLS𝑊 ,𝛿
J (𝑡) has a solution and its solution is

unique.
Suppose 𝑦 ∈ 𝑊 ∩ (𝑊⊥J ,1 ⊕ · · · ⊕ 𝑊

⊥
J , 𝑝). We prove 𝑦𝐽𝑘 = ®0 by induction on

𝑘 , starting at 𝑘 = 𝑝. The induction hypothesis is that 𝑦𝐽>𝑘 = ®0, which is an empty
requirement when 𝑘 = 𝑝. The hypothesis 𝑦𝐽>𝑘 = ®0 together with the assumption
𝑦 ∈ 𝑊 is equivalent to 𝑦 ∈ 𝑊 ∩ R𝑛𝐽≤𝑘 , and implies 𝑦𝐽𝑘 ∈ 𝜋𝐽𝑘 (𝑊 ∩ R𝑛𝐽≤𝑘 ) := 𝑊J ,𝑘 .
Since we also have 𝑦𝐽𝑘 ∈ 𝑊⊥J ,𝑘 by assumption, which is the orthogonal complement
of 𝑊J ,𝑘 , we must have 𝑦𝐽𝑘 = ®0. Hence, by induction 𝑦 = ®0. This finishes the proof
that LLS𝑊 ,𝛿

J (𝑡) is well-defined.
Next we prove that𝑤minimizes min{‖𝛿𝐽𝑘 (𝑡𝐽𝑘−𝑧𝐽𝑘 )‖ : 𝑧 ∈ 𝑊, 𝑧𝐽>𝑘 = 𝑤𝐽>𝑘 }. The

optimality condition is for 𝛿𝐽𝑘 (𝑡𝐽𝑘 − 𝑧𝐽𝑘 ) to be orthogonal to 𝛿𝐽𝑘𝑢 for any 𝑢 ∈ 𝑊J ,𝑘 .
By the LLS equation, we have 𝛿𝐽𝑘 (𝑡𝐽𝑘 − 𝑤𝐽𝑘 ) = 𝛿−1

𝐽𝑘
𝑣𝐽𝑘 , where 𝑣𝐽𝑘 ∈ 𝑊⊥J ,𝑘 . Noting

then that 〈𝛿𝐽𝑘𝑢, 𝛿−1
𝐽𝑘
𝑣〉 = 〈𝑢𝐽𝑘 , 𝑣𝐽𝑘 〉 = 0 for 𝑢 ∈ 𝑊J ,𝑘 , the optimality condition follows

immediately. □
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With these tools, we can prove that the lifting costs are self-dual. This explains
the reverse order in the dual vs primal LLS step and justifies our attention on the
lifting cost in a self-dual algorithm. The next proposition generalizes the result of
[101].

Proposition 4.3.8 (Proof on p. 166). For a linear subspace 𝑊 ⊆ R𝑛 and index set
𝐼 ⊆ [𝑛] with 𝐽 = [𝑛] \ 𝐼,

‖𝐿𝑊𝐼 ‖ ≤ max{1, ‖𝐿𝑊 ⊥𝐽 ‖}.

In particular, ℓ𝑊 (𝐼) = ℓ𝑊 ⊥ (𝐽).

We defer the proof to Section 4.5. Note that this proposition also implies Propo-
sition 4.2.1(iv).

Partition lifting scores

A key insight is that if the layering J is “well-separated”, then we indeed have
𝑥Δ𝑠ll + 𝑠Δ𝑥ll ≈ −𝑥𝑠, that is, the LLS direction is close to the affine scaling direction.
This will be shown in Lemma 4.3.10. The notion of “well-separatedness” can be
formalized as follows. Recall the definition of the lifting score (4.5). The lifting score
of the layering J = (𝐽1, 𝐽2, . . . , 𝐽𝑝) of [𝑛] with respect to𝑊 is defined as

ℓ𝑊 (J ) := max
2≤𝑘≤𝑝

ℓ𝑊 (𝐽≥𝑘) .

For 𝛿 ∈ R𝑛++, we use ℓ𝑊 ,𝛿 (𝐼) := ℓDiag(𝛿)𝑊 (𝐼) and ℓ𝑊 ,𝛿 (J ) := ℓDiag(𝛿)𝑊 (J ). When
the context is clear, we omit𝑊 and write ℓ𝛿 (𝐼) := ℓ𝑊 ,𝛿 (𝐼) and ℓ𝛿 (J ) := ℓ𝑊 ,𝛿 (J ).

The following important duality claim asserts that the lifting score of a layering
equals the lifting score of the reverse layering in the orthogonal complement subspace.
It is an immediate consequence of Proposition 4.3.8.

Lemma 4.3.9. Let𝑊 ⊆ R𝑛 be a linear subspace, 𝛿 ∈ R𝑛++. For an ordered partition
J = (𝐽1, 𝐽2, . . . , 𝐽𝑝), let J̄ = (𝐽𝑝, 𝐽𝑝−1, . . . , 𝐽1) denote the reverse ordered partition.
Then, we have

ℓ𝑊 ,𝛿 (J ) = ℓ𝑊 ⊥, 𝛿−1 (J̄ ).

Proof. Let 𝑈 = Diag(𝛿)𝑊 . Note that 𝑈⊥ = Diag(𝛿−1)𝑊⊥. Then by Proposi-
tion 4.3.8, for 2 ≤ 𝑘 ≤ 𝑝, we have that

ℓ𝑊 ,𝛿 (𝐽≥𝑘) = ℓ𝑈 (𝐽≥𝑘) = ℓ𝑈
⊥ (𝐽≤𝑘−1) = ℓ𝑈

⊥ (𝐽≥𝑝−𝑘+2) = ℓ𝑊
⊥, 𝛿−1 (𝐽≥𝑝−𝑘+2).

In particular, ℓ𝑊 ,𝛿 (J ) = ℓ𝑊 ⊥, 𝛿−1 (J̄ ), as needed. □
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The next lemma summarizes key properties of the LLS steps, assuming the
partition has a small lifting score. We show that if ℓ𝛿 (J ) is sufficiently small, then
on the one hand, the LLS step will be very close to the affine scaling step, and on
the other hand, on each layer 𝑘 ∈ [𝑝], it will be very close to the affine scaling step
restricted to this layer for the subspace𝑊J ,𝑘 . The proof is deferred to Section 4.5.
Lemma 4.3.10 (Proof on p. 171). Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ N (𝛽) for 𝛽 ∈ (0, 1/4], let
𝜇 = 𝜇(𝑤) and 𝛿 = 𝛿(𝑤). LetJ = (𝐽1, . . . , 𝐽𝑝) be a layering with ℓ𝛿 (J ) ≤ 𝛽/(32𝑛2),
and let Δ𝑤ll = (Δ𝑥ll,Δ𝑦ll,Δ𝑠ll) denote the LLS direction for the layering J . Then the
following properties hold.

(i) We have

‖𝛿𝐽𝑘Δ𝑥ll
𝐽𝑘
+ 𝛿−1

𝐽𝑘
Δ𝑠ll𝐽𝑘 + 𝑥

1/2
𝐽𝑘
𝑠1/2𝐽𝑘 ‖ ≤ 6𝑛ℓ𝛿 (J )√𝜇 , ∀𝑘 ∈ [𝑝], and (4.28)

‖𝛿Δ𝑥ll + 𝛿−1Δ𝑠ll + 𝑥1/2𝑠1/2‖ ≤ 6𝑛3/2ℓ𝛿 (J )√𝜇 . (4.29)

(ii) For the affine scaling direction Δ𝑤a = (Δ𝑥a,Δ𝑦a,Δ𝑠a),
‖Rxll − Rxa‖, ‖Rsll − Rsa‖ ≤ 6𝑛3/2ℓ𝛿 (J ) .

(iii) For the residuals of the LLS steps we have ‖Rxll‖, ‖Rsll‖ ≤
√

2𝑛. For each
𝑖 ∈ [𝑛], max{|Rxll

𝑖 |, |Rsll
𝑖 |} ≥ 1

2 −
3
4 𝛽.

(iv) Let 𝜀ll(𝑤) = max𝑖∈[𝑛] min{|Rxll
𝑖 |, |Rsll

𝑖 |}, and define the step length as
𝛼 := sup{𝛼′ ∈ [0, 1] : ∀�̄� ∈ [0, 𝛼′] : 𝑤 + �̄�Δ𝑤ll ∈ N (2𝛽)} .

We obtain the following bounds on the progress in the LLS step:

𝜇(𝑤 + 𝛼Δ𝑤ll) = (1 − 𝛼)𝜇 , and

𝛼 ≥ 1 − 3
√
𝑛𝜀ll(𝑤)
𝛽

.

(v) We have 𝜀ll(𝑤) = 0 if and only if 𝛼 = 1. These are further equivalent to
𝑤 + Δ𝑤ll = (𝑥 + Δ𝑥ll, 𝑦 + Δ𝑦ll, 𝑠 + Δ𝑠ll) being an optimal solution to (4.1).

4.3.5 The layering procedure

Our algorithm performs LLS steps on a layering with a low lifting score. A further
requirement is that within each layer, the circuit imbalances 𝜅 𝛿𝑖 𝑗 defined in (4.7) are
suitably bounded. The rescaling here is with respect to 𝛿 = 𝛿(𝑤) for the current iterate
𝑤 = (𝑥, 𝑦, 𝑠). To define the precise requirement on the layering, we first introduce an
auxiliary graph. Throughout we use the parameter

𝛾 :=
𝛽

210𝑛5 . (4.30)
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The auxiliary graph For a vector 𝛿 ∈ R𝑛++ and 𝜎 > 0, we define the directed graph
𝐺 𝛿,𝜎 = ([𝑛], 𝐸𝛿,𝜎) such that (𝑖, 𝑗) ∈ 𝐸𝛿,𝜎 if 𝜅 𝛿𝑖 𝑗 ≥ 𝜎. This is a subgraph of the
circuit ratio digraph studied in Section 4.2, including only the edges where the circuit
ratio is at least the threshold 𝜎. Note that we do not have direct access to this graph,
as we cannot efficiently compute the values 𝜅 𝛿𝑖 𝑗 .

At the beginning of the entire algorithm, we run the subroutine Find-Circuits(𝐴)
as in Theorem 4.2.15, where 𝑊 = Ker(𝐴). We assume the matroid M(𝐴) is non-
separable. For a separable matroid, we can solve the subproblems of our LP on
the components separately. Thus, for each 𝑖 ≠ 𝑗 , 𝑖, 𝑗 ∈ [𝑛], we obtain an estimate
𝜅𝑖 𝑗 ≤ 𝜅𝑖 𝑗 . These estimates will be gradually improved throughout the algorithm.

Note that 𝜅 𝛿𝑖 𝑗 = 𝜅𝑖 𝑗𝛿 𝑗/𝛿𝑖 and 𝜅 𝛿𝑖 𝑗 = 𝜅𝑖 𝑗𝛿 𝑗/𝛿𝑖 . If 𝜅 𝛿𝑖 𝑗 ≥ 𝜎, then we are guaranteed
(𝑖, 𝑗) ∈ 𝐸𝛿,𝜎 .

Definition 4.3.11. Define �̂� 𝛿,𝜎 = ( [𝑛], �̂�𝛿,𝜎) to be the directed graph with edges
(𝑖, 𝑗) such that 𝜅 𝛿𝑖 𝑗 ≥ 𝜎; clearly, �̂� 𝛿,𝜎 is a subgraph of 𝐺 𝛿,𝜎 .

Lemma 4.3.12. Let 𝛿 ∈ R𝑛++. For every 𝑖 ≠ 𝑗 , 𝑖, 𝑗 ∈ [𝑛], 𝜅 𝛿𝑖 𝑗 · 𝜅 𝛿𝑗𝑖 ≥ 1. Consequently,
for any 0 < 𝜎 ≤ 1, at least one of (𝑖, 𝑗) ∈ �̂�𝛿,𝜎 or ( 𝑗 , 𝑖) ∈ �̂�𝛿,𝜎 .

Proof. We show that this property holds at the initialization. Since the estimates can
only increase, it remains true throughout the algorithm. Recall the definition of 𝜅𝑖 𝑗
from Theorem 4.2.15. This is defined as the maximum of |𝑔 𝑗/𝑔𝑖 | such that 𝑔 ∈ 𝑊 ,
supp(𝑔) = 𝐶 for some 𝐶 ∈ Ĉ containing 𝑖 and 𝑗 . For the same vector 𝑔, we get
𝜅 𝑗𝑖 ≥ |𝑔𝑖/𝑔 𝑗 |. Consequently, 𝜅𝑖 𝑗 · 𝜅 𝑗𝑖 ≥ 1, and also 𝜅 𝛿𝑖 𝑗 · 𝜅 𝛿𝑗𝑖 ≥ 1. The second claim
follows by the assumption 𝜎 ≤ 1. □

Balanced layerings We are ready to define the requirements on the layering in the
algorithm. In the algorithm, 𝛿 = 𝛿(𝑤) will correspond to the scaling of the current
iterate 𝑤 = (𝑥, 𝑦, 𝑠).

Definition 4.3.13. Let 𝛿 ∈ R𝑛++. The layering J = (𝐽1, 𝐽2, . . . , 𝐽𝑝) of [𝑛] is 𝛿-
balanced if

(i) ℓ𝛿 (J ) ≤ 𝛾, and

(ii) 𝐽𝑘 is strongly connected in 𝐺 𝛿,𝛾/𝑛 for all 𝑘 ∈ [𝑝].

The following lemma shows that within each layer, the 𝜅 𝛿𝑖 𝑗 values are within a
bounded range. This will play an important role in our potential analysis.

Lemma 4.3.14. Let 0 < 𝜎 < 1 and 𝑡 > 0, and 𝑖, 𝑗 ∈ [𝑛], 𝑖 ≠ 𝑗 .
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(i) If the graph 𝐺 𝛿,𝜎 contains a directed path of at most 𝑡 − 1 edges from 𝑗 to 𝑖,
then

𝜅 𝛿𝑖 𝑗 <

(
𝜅∗

𝜎

) 𝑡
.

(ii) If 𝐺 𝛿,𝜎 contains a directed path of at most 𝑡 − 1 edges from 𝑖 to 𝑗 , then

𝜅 𝛿𝑖 𝑗 >
( 𝜎
𝜅∗

) 𝑡
.

Proof. For part (i), let 𝑗 = 𝑖1, 𝑖2, . . . , 𝑖ℎ = 𝑖 be a path in 𝐺 𝛿,𝜎 in 𝐽 from 𝑗 to 𝑖 with
ℎ ≤ 𝑡. That is, 𝜅 𝛿𝑖ℓ 𝑖ℓ+1 ≥ 𝜎 for each ℓ ∈ [ℎ]. Theorem 4.2.13 yields

(𝜅∗)𝑡 ≥ 𝜅 𝛿𝑖 𝑗 · 𝜎ℎ−1 > 𝜅 𝛿𝑖 𝑗 · 𝜎𝑡 ,

since ℎ ≤ 𝑡 and 𝜎 < 1. Part (ii) follows using part (i) for 𝑗 and 𝑖, and that 𝜅 𝛿𝑖 𝑗 · 𝜅 𝛿𝑗𝑖 ≥ 1
according to Lemma 4.3.12. □

Description of the layering subroutine Consider an iterate 𝑤 = (𝑥, 𝑦, 𝑠) ∈ N (𝛽)
of the algorithm with 𝛿 = 𝛿(𝑤), The subroutine Layering(𝛿, 𝜅), described in Algo-
rithm 3, constructs a 𝛿-balanced layering. We recall that the approximated auxilliary
graph �̂� 𝛿,𝛾/𝑛 with respect to 𝜅 is as in Definition 4.3.11

Algorithm 3 Layering(𝛿, 𝜅)
Input: 𝛿 ∈ R𝑛++ and 𝜅 ∈ R𝐸++.
Output: 𝛿-balanced layering J = (𝐽1, . . . , 𝐽𝑝) and updated values 𝜅 ∈ R𝐸++.

Compute the strongly connected components 𝐶1, 𝐶2, . . . , 𝐶ℓ of �̂� 𝛿,𝛾/𝑛, listed in
the ordering imposed by �̂� 𝛿,𝛾/𝑛
�̄� ← �̂�𝛿,𝛾/𝑛
for 𝑘 = 2, . . . , ℓ do

Call Verify-Lift(Diag(𝛿)𝑊,𝐶≥𝑘 , 𝛾) that answers ‘pass’ or ‘fail’
if the answer is ‘fail’ then

Let 𝑖 ∈ 𝐶≥𝑘 , 𝑗 ∈ 𝐶<𝑘 , and 𝑡 be the output of Verify-Lift such that
𝛾/𝑛 ≤ 𝑡 ≤ 𝜅 𝛿𝑖 𝑗

𝜅𝑖 𝑗 ← 𝑡𝛿𝑖/𝛿 𝑗
�̄� ← �̄� ∪ {(𝑖, 𝑗)}

Compute strongly connected components 𝐽1, 𝐽2, . . . , 𝐽𝑝 of ( [𝑛], �̄�), listed in the
ordering imposed by �̂� 𝛿,𝛾/𝑛 return J = (𝐽1, 𝐽2, . . . , 𝐽𝑝), 𝜅.

We now give an overview of the subroutine Layering(𝛿, 𝜅). We start by com-
puting the strongly connected components (SCCs) of the directed graph �̂� 𝛿,𝛾/𝑛.
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The edges of this graph are obtained using the current estimates 𝜅 𝛿𝑖 𝑗 . According
to Lemma 4.3.12, we have (𝑖, 𝑗) ∈ �̂�𝛿,𝛾/𝑛 or ( 𝑗 , 𝑖) ∈ �̂�𝛿,𝛾/𝑛 for every 𝑖, 𝑗 ∈ [𝑛],
𝑖 ≠ 𝑗 . Hence, there is a linear ordering of the components 𝐶1, 𝐶2, . . . , 𝐶ℓ such that
(𝑢, 𝑣) ∈ �̂�𝛿,𝛾/𝑛 whenever 𝑢 ∈ 𝐶𝑖 , 𝑣 ∈ 𝐶 𝑗 , and 𝑖 < 𝑗 . We call this the ordering
imposed by �̂� 𝛿,𝛾/𝑛.

For each 𝑘 = 2, . . . , ℓ, we use the subroutine Verify-Lift(Diag(𝛿)𝑊,𝐶≥𝑘 , 𝛾)
described in Lemma 4.2.11. If the subroutine returns ‘pass’, then we conclude
ℓ𝛿 (𝐶≥𝑘) ≤ 𝛾, and proceed to the next layer. If the answer is ‘fail’, then the subroutine
returns as certificates 𝑖 ∈ 𝐶≥𝑘 , 𝑗 ∈ 𝐶<𝑘 , and 𝑡 such that 𝛾/𝑛 ≤ 𝑡 ≤ 𝜅 𝛿𝑖 𝑗 . In this case,
we update 𝜅 𝛿𝑖 𝑗 to the higher value 𝑡. We add (𝑖, 𝑗) to an edge set �̄� ; this edge set was
initialized to contain �̂�𝛿,𝛾/𝑛. After adding (𝑖, 𝑗), all components 𝐶ℓ between those
containing 𝑖 and 𝑗 will be merged into a single strongly connected component. To
see this, recall that if 𝑖′ ∈ 𝐶ℓ and 𝑗 ′ ∈ 𝐶ℓ′ for ℓ < ℓ′, then (𝑖′, 𝑗 ′) ∈ �̂�𝛿,𝛾/𝑛 according
to Lemma 4.3.12.

Finally, we compute the strongly connected components of ( [𝑛], �̄�). We let
𝐽1, 𝐽2, . . . , 𝐽𝑝 denote their unique acyclic order, and return these layers.

Lemma 4.3.15. The subroutine Layering(𝛿, 𝜅) returns a 𝛿-balanced layering in
𝑂 (𝑛𝑚2 + 𝑛2) time.

The difficult part of the proof is showing the running time bound. We note that
the weaker bound 𝑂 (𝑛2𝑚2) can be obtained by a simpler argument.

Proof. We first verify that the output layering is indeed 𝛿-balanced. For property (i)
of Definition 4.3.13, note that each 𝐽𝑞 component is the union of some of the 𝐶𝑘’s.
In particular, for every 𝑞 ∈ [𝑝], the set 𝐽≥𝑞 = 𝐶≥𝑘 for some 𝑘 ∈ [ℓ]. Assume now
ℓ𝛿 (𝐶≥𝑘) > 𝛾. At step 𝑘 of the main cycle, the subroutine Verify-Lift returned the
answer ‘fail’, and a new edge (𝑖, 𝑗) ∈ 𝐸 was added with 𝑖 ∈ 𝐶≥𝑘 , 𝑗 ∈ 𝐶<𝑘 . Note that
we already had ( 𝑗 , 𝑖) ∈ �̂�𝛿,𝛾/𝑛, since 𝑗 ∈ 𝐶𝑟 for some 𝑟 < 𝑘 , and 𝑖 ∈ 𝐶𝑟 ′ for 𝑟 ′ ≥ 𝑘 .
This contradicts the choice of 𝐽≥𝑞 as a maximal strongly connected component in
([𝑛], 𝐸).

Property (ii) follows since all new edges added to 𝐸 have 𝜅𝑖 𝑗 ≥ 𝛾/𝑛. Therefore,
([𝑛], 𝐸) is a subgraph of 𝐺 𝛿,𝛾/𝑛.

Let us now turn to the computational cost. The initial strongly-connected compo-
nents can be obtained in time 𝑂 (𝑛2), and the same bound holds for the computation
of the final components. (The latter can be also done in linear time, exploiting the
special structure that the components 𝐶𝑖 have a complete linear ordering.)

The second computational bottleneck is the subroutine Verify-Lift. We assume
a matrix 𝑀 ∈ R𝑛×(𝑛−𝑚) is computed at the very beginning such that range(𝑀) = 𝑊 .
We first explain how to implement one call to Verify-Lift in 𝑂 (𝑛(𝑛 − 𝑚)2) time.
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We then sketch how to amortize the work across the different calls to Verify-Lift,
using the nested structure of the layering, to implement the whole procedure in
𝑂 (𝑛(𝑛 − 𝑚)2) time. To turn this into 𝑂 (𝑛𝑚2), we recall that the layering procedure
is the same for 𝑊 and 𝑊⊥ due to duality (Proposition 4.3.8). Since dim(𝑊⊥) = 𝑚,
applying this subroutine on𝑊⊥ instead of𝑊 achieves the same result in time𝑂 (𝑛𝑚2).

We now explain the implementation of Verify-Lift, where we are given as input
𝐶 ⊆ [𝑛] and the basis matrix 𝑀 ∈ R𝑛×(𝑛−𝑚) as above with range(𝑀) = 𝑊 . Clearly,
the running time is dominated by the computation of the set 𝐼 ⊆ 𝐶 and the matrix
𝐵 ∈ R( [𝑛]\𝐶)×|𝐼 | satisfying 𝐿𝑊𝐶 (𝑥) [𝑛]\𝐶 = 𝐵𝑥𝐼 , for 𝑥 ∈ 𝜋𝐶 (𝑊). We explain how
to compute 𝐼 and 𝐵 from 𝑀 using column operations (note that these preserve the
range). The valid choices for 𝐼 ⊆ 𝐶 are in correspondence with maximal sets of
linear independent rows of 𝑀𝐶,•, noting then that |𝐼 | = 𝑟 where 𝑟 := rk(𝑀𝐶,•). Let
𝐷1 = [𝑛 − 𝑚 − 𝑟] and 𝐷2 = [𝑛 − 𝑚] \ [𝑛 − 𝑚 − 𝑟]. By applying columns operations
to 𝑀 , we can compute 𝐼 ⊆ 𝐶 such that 𝑀𝐼 ,𝐷2 = 𝐼𝑟 (𝑟 × 𝑟 identity) and 𝑀𝐶,𝐷1 = 0.
This requires 𝑂 (𝑛(𝑛 − 𝑚) |𝐶 |) time using Gaussian elimination. At this point, note
that 𝜋𝐶 (𝑊) = range(𝑀𝐶,𝐷2), 𝜋𝐼 (𝑊) = R𝐼 and range(𝑀•,𝐷1) = 𝑊 ∩ R𝑛[𝑛]\𝐶 . To
compute 𝐵, we must transform the columns of 𝑀•,𝐷2 into minimum norm lifts
of 𝑒𝑖 ∈ 𝜋𝐼 (𝑊) into 𝑊 , for all 𝑖 ∈ 𝐼. For this purpose, it suffices to make the
columns of𝑀[𝑛]\𝐶,𝐷2 orthogonal to the range of𝑀[𝑛]\𝐶,𝐷1 . Applying Gram-Schmidt
orthogonalization, this requires 𝑂 ((𝑛 − |𝐶 |) (𝑛 − 𝑚) (𝑛 − 𝑚 − 𝑟)) time. From here,
the desired matrix 𝐵 = 𝑀[𝑛]\𝐶,𝐷2 . Thus, the total running time of Verify-Lift is
𝑂 (𝑛(𝑛 − 𝑚) |𝐶 | + (𝑛 − |𝐶 |) (𝑛 − 𝑚)(𝑛 − 𝑚 − 𝑟)) = 𝑂 (𝑛(𝑛 − 𝑚)2).

We now sketch how to amortize the work of all the calls of Verify-Lift during
the layering algorithm, to achieve a total 𝑂 (𝑛(𝑛−𝑚)2) running time. Let 𝐶1, . . . , 𝐶ℓ
denote the candidate SCC layering. Our task is to compute the matrices 𝐵𝑘 , 2 ≤ 𝑘 ≤ ℓ,
needed in the calls to Verify-Lift on𝑊,𝐶≥𝑘 , 2 ≤ 𝑘 ≤ ℓ, in total𝑂 (𝑛(𝑛−𝑚)2) time.
We achieve this in three steps working with the basis matrix 𝑀 as above. Firstly, by
applying column operations to𝑀 , we compute sets 𝐼𝑘 ⊆ 𝐶𝑘 and𝐷𝑘 = [|𝐼≤𝑘 |]\[|𝐼<𝑘 |],
𝑘 ∈ [ℓ], such that 𝑀𝐼𝑘 ,𝐷𝑘 = 𝐼𝑟𝑘 , where 𝑟𝑘 = |𝐼𝑘 |, and 𝑀𝐶≥𝑘 ,𝐷<𝑘 = 0, 2 ≤ 𝑘 ≤ ℓ. Note
that this enforces ∑ℓ

𝑘=1 𝑟𝑘 = (𝑛 − 𝑚). This computation requires 𝑂 (𝑛(𝑛 − 𝑚)2) time
using Gaussian elimination. This computation achieves range(𝑀𝐶𝑘 ,𝐷𝑘 ) = 𝜋𝐶𝑘 (𝑊 ∩
R𝑛𝐶≤𝑘 ), range(𝑀𝐶≥𝑘 ,𝐷≥𝑘 ) = 𝜋𝐶≥𝑘 (𝑊) and range(𝑀•,𝐷≤𝑘 ) = 𝑊 ∩R𝑛𝐶≤𝑘 , for all 𝑘 ∈ [ℓ].

From here, we block orthogonalize 𝑀 , such that the columns of 𝑀•,𝐷𝑘 are
orthogonal to the range of 𝑀•,𝐷<𝑘 , 2 ≤ 𝑘 ≤ ℓ. Applying an appropriately adapted
Gram-Schmidt orthogonalization, this requires 𝑂 (𝑛(𝑛 − 𝑚)2) time. Note that this
operation maintains 𝑀𝐼𝑘 ,𝐷𝑘 = 𝐼𝑟𝑘 , 𝑘 ∈ [ℓ], since 𝑀𝐶≥𝑘 ,𝐷<𝑘 = 0. At this point, for
𝑘 ∈ [ℓ] the columns of 𝑀•,𝐷𝑘 are in correspondence with minimum norm lifts of
𝑒𝑖 ∈ 𝜋𝐷≥𝑘 (𝑊 ) into𝑊 , for all 𝑖 ∈ 𝐼𝑘 . Note that to compute the matrix 𝐵𝑘 we need the
lifts of 𝑒𝑖 ∈ 𝜋𝐷≥𝑘 (𝑊 ) , for all 𝑖 ∈ 𝐼≥𝑘 instead of just 𝑖 ∈ 𝐼𝑘 .
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We now compute the matrices 𝐵ℓ , . . . , 𝐵2 in this order via the following iterative
procedure. Let 𝑘 denote the iteration counter, which decrements from ℓ to 2. For
𝑘 = ℓ (first iteration), we let 𝐵ℓ = 𝑀𝐶<ℓ ,𝐷ℓ and decrement 𝑘 . For 𝑘 < ℓ, we eliminate
the entries of 𝑀𝐼𝑘 ,𝐷>𝑘 by using the columns of 𝑀•,𝐷𝑘 . We then let 𝐵𝑘 = 𝑀𝐶<𝑘 ,𝐷≥𝑘
and decrement 𝑘 . To justify correctness, one need only notice that at the end of
iteration 𝑘 , we maintain the orthogonality of 𝑀•,𝐷≥𝑘 to the range of 𝑀•,𝐷<𝑘 and that
𝑀𝐼≥𝑘 ,𝐷≥𝑘 = 𝐼 |𝐼≥𝑘 | is the appropriate identity. The cost of this procedure is the same
as a full run of Gaussian elimination and thus is bounded by𝑂 (𝑛(𝑛−𝑚)2). The calls
to Verify-Lift during the layering procedure can thus be executed in 𝑂 (𝑛(𝑛−𝑚)2))
amortized time as claimed. □

4.3.6 The overall algorithm

Algorithm 4 LP-Solve(𝐴, 𝑏, 𝑐, 𝑤0)

Input: 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚, 𝑐 ∈ R𝑛, and an initial feasible solution 𝑤0 =
(𝑥0, 𝑦0, 𝑠0) ∈ N (1/8) to (4.1).

Output: Optimal solution 𝑤∗ = (𝑥∗, 𝑦∗, 𝑠∗) to (4.1). Call Find-Circuits(𝐴) to
obtain the lower bounds 𝜅𝑖 𝑗 for each 𝑖, 𝑗 ∈ [𝑛], 𝑖 ≠ 𝑗 𝑘 ← 0, 𝛼← 0

1: while 𝜇(𝑤𝑘) ≠ 0 do
2: Compute affine scaling direction Δ𝑤a = (Δ𝑥a,Δ𝑦a,Δ𝑠a) for 𝑤𝑘 ⊲ Predictor
3: if 𝜀a(𝑤) < 10𝑛3/2𝛾 then ⊲ Recall 𝜀a(𝑤) defined in (4.21)
4: 𝛿← (𝑠𝑘)1/2(𝑥𝑘)−1/2

5: (J , 𝜅) ←Layering(𝛿, 𝜅)
6: Compute Layered Least Squares direction Δ𝑤ll = (Δ𝑥ll,Δ𝑦ll,Δ𝑠ll) for the

layering J and 𝑤
7: Δ𝑤 ← Δ𝑤ll

8: else
9: Δ𝑤 ← Δ𝑤a

10: 𝛼← sup{𝛼′ ∈ [0, 1] : ∀�̄� ∈ [0, 𝛼′] : 𝑤 + �̄�Δ𝑤 ∈ N (1/4)}
11: 𝑤′← 𝑤𝑘 + 𝛼Δ𝑤
12: Compute centrality direction Δ𝑤c = (Δ𝑥c,Δ𝑦c,Δ𝑠c) for 𝑤′ ⊲ Corrector
13: 𝑤𝑘+1 ← 𝑤′ + Δ𝑤c

14: 𝑘 ← 𝑘 + 1
return 𝑤𝑘 = (𝑥𝑘 , 𝑦𝑘 , 𝑠𝑘).

Algorithm 4 presents the overall algorithm LP-Solve(𝐴, 𝑏, 𝑐, 𝑤0). We assume
that an initial feasible solution 𝑤0 = (𝑥0, 𝑦0, 𝑠0) ∈ N (𝛽) is given. We address this
in Section 4.7, by adapting the extended system used in [198]. We note that this
subroutine requires an upper bound on �̄�∗. Since computing �̄�∗ is hard, we can
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implement it by a doubling search on log �̄�∗, as explained in Section 4.7. Other than
for initialization, the algorithm does not require an estimate on �̄�∗.

The algorithm starts with the subroutine Find-Circuits(𝐴) as in Theorem 4.2.15.
The iterations are similar to the MTY Predictor-Corrector algorithm [145]. The main
difference is that certain affine scaling steps are replaced by LLS steps. In every
predictor step, we compute the affine scaling direction, and consider the quantity
𝜀a(𝑤) = max𝑖∈[𝑛] min{|Rxa

𝑖 |, |Rsa
𝑖 |}. If this is above the threshold 10𝑛3/2𝛾, then we

perform the affine scaling step. However, in case 𝜀a(𝑤) < 10𝑛3/2𝛾, we use the
LLS direction instead. In each such iteration, we call the subroutine Layering(𝛿, 𝜅)
(Algorithm 3) to compute the layers, and we compute the LLS step for this layering.

Another important difference is that the algorithm does not require a final rounding
step. It terminates with the exact optimal solution 𝑤∗ once a predictor step is able to
perform a full step with 𝛼 = 1.

Theorem 4.3.16. For given 𝐴 ∈ R𝑚×𝑛, 𝑏 ∈ R𝑚, 𝑐 ∈ R𝑛, and an initial feasible
solution 𝑤0 = (𝑥0, 𝑦0, 𝑠0) ∈ N (1/8), Algorithm 4 finds an optimal solution to (4.1)
in 𝑂 (𝑛2.5 log 𝑛 log( �̄�∗𝐴 + 𝑛)) iterations.

Remark 4.3.17. Whereas using LLS steps enables us to give a strong bound on the
total number of iterations, finding LLS directions has a significant computational
overhead as compared to finding affine scaling directions. The layering J can be
computed in time 𝑂 (𝑛𝑚2) (Lemma 4.3.15), and the LLS steps also require 𝑂 (𝑛𝑚2)
time, see [142,198]. This is in contrast to the computational cost 𝑂 (𝑛𝜔) of an affine
scaling direction. Here 𝜔 < 2.373 is the matrix multiplication constant [196].

We now sketch a possible approach to amortize the computational cost of the LLS
steps over the sequence of affine scaling steps. It was shown in [147] that for the MTY
P-C algorithm, the “bad” scenario between two crossover events amounts to a series
of affine scaling steps where the progress in 𝜇 increases exponentially from every iter-
ation to the next. This corresponds to the term𝑂 (min{𝑛2 log log(𝜇0/𝜂), log(𝜇0/𝜂)})
in their running time analysis. Roughly speaking, such a sequence of affine scaling
steps indicates that an LLS step is necessary.

Hence, we could observe these accelerating sequences of affine scaling steps, and
perform an LLS step after we see a sequence of length 𝑂 (log 𝑛). The progress made
by these affine scaling steps offsets the cost of computing the LLS direction.

4.4 The potential function and the overall analysis

Let 𝜇 > 0 and 𝛿(𝜇) = 𝑠(𝜇)1/2𝑥(𝜇)−1/2 =
√
𝜇/𝑥(𝜇) = 𝑠(𝜇)/√𝜇 correspond to the

point on the central path and recall the definition of 𝛾 in (4.30). For 𝑖, 𝑗 ∈ [𝑛], 𝑖 ≠ 𝑗 ,
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we define

𝜚𝜇 (𝑖, 𝑗) :=
log 𝜅 𝛿 (𝜇)𝑖 𝑗

log
(
4𝑛𝜅∗𝐴/𝛾

) ,
and the main potentials in the algorithm as

Ψ𝜇 (𝑖, 𝑗) := max
{
1,min

{
2𝑛, inf

0<𝜇′<𝜇
𝜚𝜇
′ (𝑖, 𝑗)

}}
and Ψ(𝜇) :=

∑
𝑖, 𝑗∈[𝑛],𝑖≠ 𝑗

logΨ𝜇 (𝑖, 𝑗).

The quantity Ψ𝜇 (𝑖, 𝑗) is motivated by the bounds in Lemma 4.3.14. This statement
together with (4.17) imply Lemma 4.4.1.

Lemma 4.4.1. Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ N (𝛽) for 𝛽 ∈ (0, 1/4], let 𝜇 = 𝜇(𝑤), and
𝛿 = 𝛿(𝑤). Let 𝑖, 𝑗 ∈ [𝑛], 𝑖 ≠ 𝑗 .

1. If 𝐺 𝛿,𝛾/(4𝑛) contains a path from 𝑗 to 𝑖 of at most 𝑡 − 1 edges, then 𝜚𝜇 (𝑖, 𝑗) < 𝑡.

2. If𝐺 𝛿,𝛾/(4𝑛) contains a path from 𝑖 to 𝑗 of at most 𝑡−1 edges, then 𝜚𝜇 (𝑖, 𝑗) > −𝑡.

3. If Ψ𝜇 (𝑖, 𝑗) ≥ 𝑡, then 𝑖 and 𝑗 cannot be together on a layer of size at most 𝑡, and
𝑗 cannot be on a layer preceding the layer containing 𝑖 in any 𝛿(𝑤′)-balanced
layering, where 𝑤′ = (𝑥 ′, 𝑦′, 𝑠′) ∈ N (𝛽) with 𝜇(𝑤′) < 𝜇.

Our potentials Ψ𝜇 (𝑖, 𝑗) can be seen as fine-grained analogues of the crossover
events analyzed in [146,147,198]. Roughly speaking, a crossover event corresponds
to Ψ𝜇 (𝑖, 𝑗) increasing above 𝑛, meaning that 𝑖 and 𝑗 cannot be contained in the same
layer after the normalized duality gap decreases below 𝜇.

In what follows, we formulate four important lemmas crucial for the proof of
Theorem 4.3.16. For the lemmas, we only highlight some key ideas here, and defer
the full proofs to Section 4.6.

For a triple 𝑤 ∈ N (𝛽), Δ𝑤ll refers to the LLS direction found in the algorithm,
and Rxll and Rsll denote the residuals as in (4.19). For a subset 𝐼 ⊆ [𝑛] recall the
definition

𝜀ll
𝐼 (𝑤) := max

𝑖∈𝐼
min{|Rxll

𝑖 |, |Rsll
𝑖 |} .

We introduce another important quantity 𝜉 for the analysis:

𝜉 ll
𝐼 (𝑤) := min{‖Rxll

𝐼 ‖, ‖Rsll
𝐼 ‖}

for a subset 𝐼 ⊆ [𝑛]. For a layering J = (𝐽1, 𝐽2, . . . , 𝐽𝑝), we let

𝜉 ll
J (𝑤) = max

𝑘∈[𝑝]
𝜉 ll
𝐽𝑘
(𝑤) .
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The key idea of the analysis is to extract information about the optimal solution
𝑤∗ = (𝑥∗, 𝑦∗, 𝑠∗) from the LLS direction. The first main lemma shows that if ‖Rxll

𝐽𝑞
‖

is large on some layer 𝐽𝑞, then for at least one index 𝑖 ∈ 𝐽𝑞, 𝑥∗𝑖 /𝑥𝑖 ≥ 1/poly(𝑛), i.e.,
the variable 𝑥𝑖 has “converged”. The analogous statement holds on the dual side for
‖Rsll

𝐽𝑞
‖ and an index 𝑗 ∈ 𝐽𝑞.

Lemma 4.4.2 (Proof on p. 174). Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ N (𝛽) for 𝛽 ∈ (0, 1/8] and let
𝑤∗ = (𝑥∗, 𝑦∗, 𝑠∗) be the optimal solution corresponding to 𝜇∗ = 0 on the central path.
Let further J = (𝐽1, . . . , 𝐽𝑝) be a 𝛿(𝑤)-balanced layering (Definition 4.3.13), and
let Δ𝑤ll = (Δ𝑥ll,Δ𝑦ll,Δ𝑠ll) be the corresponding LLS direction. Then the following
statement holds for every 𝑞 ∈ [𝑝]:

(i) There exists 𝑖 ∈ 𝐽𝑞 such that

𝑥∗𝑖 ≥
2𝑥𝑖
3
√
𝑛
· (‖Rxll

𝐽𝑞
‖ − 2𝛾𝑛) . (4.31)

(ii) There exists 𝑗 ∈ 𝐽𝑞 such that

𝑠∗𝑗 ≥
2𝑠 𝑗
3
√
𝑛
· (‖Rsll

𝐽𝑞
‖ − 2𝛾𝑛) . (4.32)

We outline the main idea of the proof of part (i); part (ii) follows analogously using
the duality of the lifting scores (Lemma 4.3.9). On layer 𝑞, the LLS step minimizes
‖𝛿𝐽𝑞 (𝑥𝐽𝑞 + Δ𝑥𝐽𝑞 )‖, subject to Δ𝑥𝐽>𝑞 = Δ𝑥ll

𝐽>𝑞
and subject to existence of Δ𝑥𝐽<𝑞 such

that Δ𝑥 ∈ 𝑊 . By making use of ℓ𝛿 (𝑤) (𝐽>𝑞) ≤ 𝛾 due to 𝛿(𝑤)-balancedness, we can
show the existence of a point 𝑧 ∈ 𝑊 + 𝑥∗ such that ‖𝛿𝐽𝑞 (𝑧𝐽𝑞 − 𝑥∗𝐽𝑞 )‖ is small, and
𝑧𝐽>𝑞 = 𝑥𝐽>𝑞+Δ𝑥ll

𝐽>𝑞
. By the choice ofΔ𝑥ll

𝐽𝑞
, we have ‖𝛿𝐽𝑞 𝑧𝐽𝑞 ‖ ≥ ‖𝛿𝐽𝑞 (𝑥𝐽𝑞+Δ𝑥ll

𝐽𝑞
)‖ =

√
𝜇‖Rxll

𝐽𝑞
‖. Therefore, ‖𝛿𝐽𝑞𝑥∗𝐽𝑞/

√
𝜇‖ cannot be much smaller than ‖Rxll

𝐽𝑞
‖. Noting

that 𝛿𝐽𝑞𝑥∗𝐽𝑞/
√
𝜇 ≈ 𝑥∗𝐽𝑞/𝑥𝐽𝑞 , we obtain a lower bound on 𝑥∗𝑖 /𝑥𝑖 for some 𝑖 ∈ 𝐽𝑞.

We emphasize that the lemma only shows the existence of such indices 𝑖 and 𝑗 ,
but does not provide an efficient algorithm to identify them. It is also useful to note
that for any 𝑖 ∈ [𝑛], max{|Rxll

𝑖 |, |Rsll
𝑖 |} ≥ 1

2 −
3
4 𝛽 according to Lemma 4.3.10(iii).

Thus, for each 𝑞 ∈ [𝑝], we obtain a positive lower bound in either case (i) or case (ii).

The next lemma allows us to argue that the potential function Ψ· (·, ·) increases
for multiple pairs of variables, if we have strong lower bounds on both 𝑥∗𝑖 and 𝑠∗𝑗 for
some 𝑖, 𝑗 ∈ [𝑛], along with a lower and upper bound on 𝜚𝜇 (𝑖, 𝑗).
Lemma 4.4.3 (Proof on p. 175). Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ N (2𝛽) for 𝛽 ∈ (0, 1/8], let
𝜇 = 𝜇(𝑤) and 𝛿 = 𝛿(𝑤). Let 𝑖, 𝑗 ∈ [𝑛] and 2 ≤ 𝜏 ≤ 𝑛 such that for the optimal
solution 𝑤∗ = (𝑥∗, 𝑦∗, 𝑠∗), we have 𝑥∗𝑖 ≥ 𝛽𝑥𝑖/(210𝑛5.5) and 𝑠∗𝑗 ≥ 𝛽𝑠 𝑗/(210𝑛5.5), and
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assume 𝜚𝜇 (𝑖, 𝑗) ≥ −𝜏. After 𝑂 (𝛽−1√𝑛𝜏 log( �̄�∗ + 𝑛)) further iterations the duality
gap 𝜇′ fulfills Ψ𝜇′ (𝑖, 𝑗) ≥ 2𝜏, and for every ℓ ∈ [𝑛] \ {𝑖, 𝑗}, either Ψ𝜇′ (𝑖, ℓ) ≥ 2𝜏, or
Ψ𝜇

′ (ℓ, 𝑗) ≥ 2𝜏.

We note that 𝑖 and 𝑗 as in the lemma are necessarily different, since 𝑖 = 𝑗 would
imply 0 = 𝑥∗𝑖 𝑠

∗
𝑖 ≥ 𝛽2𝜇/(220𝑛11) > 0.

Let us illustrate the idea of the proof of Ψ𝜇′ (𝑖, 𝑗) ≥ 2𝜏. For 𝑖 and 𝑗 as in the
lemma, and for a central path element 𝑤′ = 𝑤(𝜇′) for 𝜇′ < 𝜇, we have 𝑥 ′𝑖 ≥ 𝑥∗𝑖 /𝑛 ≥
𝛽𝑥𝑖/(210𝑛6.5) and 𝑠′𝑗 ≥ 𝑠∗𝑗/𝑛 ≥ 𝛽𝑠 𝑗/(210𝑛6.5) by the near-monotonicity of the central
path (Lemma 4.3.3). Note that

𝜅 𝛿
′
𝑖 𝑗 = 𝜅𝑖 𝑗 ·

𝛿′𝑗
𝛿′𝑖

= 𝜅𝑖 𝑗 ·
𝑥 ′𝑖 𝑠
′
𝑗

𝜇′
≥ 𝜅𝑖 𝑗 ·

𝛽2𝑥𝑖𝑠 𝑗

220𝑛13𝜇′
≥ 𝛽2(1 − 𝛽)2

220𝑛13 · 𝜅 𝛿𝑖 𝑗 ·
𝜇

𝜇′
,

where the last inequality uses Proposition 4.3.2. Consequently, as 𝜇′ sufficiently
decreases, 𝜅 𝛿′𝑖 𝑗 will become much larger than 𝜅 𝛿𝑖 𝑗 . The claim on ℓ ∈ [𝑛] \ {𝑖, 𝑗} can
be shown by using the triangle inequality 𝜅𝑖𝑘 · 𝜅𝑘 𝑗 ≥ 𝜅𝑖 𝑗 shown in Lemma 4.2.16.

Assume now 𝜉 ll
𝐽𝑞
(𝑤) ≥ 4𝛾𝑛 for some 𝑞 ∈ [𝑝] in the LLS step. Then, Lemma 4.4.2

guarantees the existence of 𝑖, 𝑗 ∈ 𝐽𝑞 such that 𝑥∗𝑖 /𝑥𝑖 , 𝑠∗𝑗/𝑠 𝑗 ≥ 4
3
√
𝑛
𝛾𝑛 > 𝛽/(210𝑛5.5).

Further, Lemma 4.4.1 gives 𝜚𝜇 (𝑖, 𝑗) ≥ −|𝐽𝑞 |. Hence, Lemma 4.4.3 is applicable for
𝑖 and 𝑗 with 𝜏 = |𝐽𝑞 |.

The overall potential argument in the proof of Theorem 4.3.16 uses Lemma 4.4.3
in three cases: 𝜉 ll

J (𝑤) ≥ 4𝛾𝑛 (Lemma 4.4.2 is applicable as above); 𝜉 ll
J (𝑤) < 4𝛾𝑛 and

ℓ𝛿
+ (J ) ≤ 4𝛾𝑛 (Lemma 4.4.4); and 𝜉 ll

J (𝑤) < 4𝛾𝑛 and ℓ𝛿+ (J ) > 4𝛾𝑛 (Lemma 4.4.5).
Here, 𝛿+ refers to the value of 𝛿 after the LLS step. Note that 𝛿+ > 0 is well-defined,
unless the algorithm terminated with an optimal solution.

To prove these lemmas, we need to study how the layers “move” during the LLS
step. We let 𝑩 = {𝑡 ∈ [𝑛] : |Rsll

𝑡 | < 4𝛾𝑛} and 𝑵 = {𝑡 ∈ [𝑛] : |Rxll
𝑡 | < 4𝛾𝑛}. The

assumption 𝜉 ll
J (𝑤) < 4𝛾𝑛 means that for each layer 𝐽𝑘 , either 𝐽𝑘 ⊆ 𝑩 or 𝐽𝑘 ⊆ 𝑵; we

accordingly refer to 𝑩-layers and 𝑵-layers.

Lemma 4.4.4 (Proof on p. 178). Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ N (𝛽) for 𝛽 ∈ (0, 1/8], and
let J = (𝐽1, . . . , 𝐽𝑝) be a 𝛿(𝑤)-balanced partition. Assume that 𝜉 ll

J (𝑤) < 4𝛾𝑛,
and let 𝑤+ = (𝑥+, 𝑦+, 𝑠+) ∈ N (2𝛽) be the next iterate obtained by the LLS step
with 𝜇+ = 𝜇(𝑤+) and assume 𝜇+ > 0. Let 𝑞 ∈ [𝑝] such that 𝜉 ll

J (𝑤) = 𝜉 ll
𝐽𝑞
(𝑤).

If ℓ𝛿+ (J ) ≤ 4𝛾𝑛, then there exist 𝑖, 𝑗 ∈ 𝐽𝑞 such that 𝑥∗𝑖 ≥ 𝛽𝑥+𝑖 /(16𝑛3/2) and
𝑠∗𝑗 ≥ 𝛽𝑠+𝑗/(16𝑛3/2). Further, for any ℓ, ℓ′ ∈ 𝐽𝑞, we have 𝜚𝜇

+ (ℓ, ℓ′) ≥ −|𝐽𝑞 |.

For the proof sketch, without loss of generality, let 𝜉 ll
J = 𝜉 ll

𝐽𝑞
= ‖Rxll

𝐽𝑞
‖, that

is, 𝐽𝑞 is an 𝑵-layer. The case 𝜉 ll
𝐽𝑞

= ‖Rsll
𝐽𝑞
‖ can be treated analogously. Since the
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residuals ‖Rxll
𝐽𝑞
‖ and ‖Rsll

𝐽𝑞
‖ cannot be both small, Lemma 4.4.2 readily provides

a 𝑗 ∈ 𝐽𝑞 such that 𝑠∗𝑗/𝑠 𝑗 ≥ 1/(6√𝑛). Using Lemma 4.3.3 and Proposition 4.3.1,
𝑠∗𝑗/𝑠+𝑗 = 𝑠∗𝑗/𝑠 𝑗 · 𝑠 𝑗/𝑠+𝑗 > (1 − 𝛽)/(6(1 + 4𝛽)𝑛3/2) > 𝛽/(16𝑛3/2).

The key ideas of showing the existence of an 𝑖 ∈ 𝐽𝑞 such that 𝑥∗𝑖 ≥ 𝑥+𝑖 /(16𝑛3/2)
are the following. With ≈, ⪅ and ⪆, we write equalities and inequalities that hold
up to small polynomial factors. First, we show that (i) ‖𝛿𝐽𝑞𝑥+𝐽𝑞 ‖ ⪅ 𝜇

+/√𝜇, and then,
that (ii) ‖𝛿𝐽𝑞𝑥∗𝐽𝑞 ‖ ⪆ 𝜇

+/√𝜇 .
If we can show (i) and (ii) as above, we obtain that ‖𝛿𝐽𝑞𝑥∗𝐽𝑞 ‖ ⪆ ‖𝛿𝐽𝑞𝑥

+
𝐽𝑞
‖, and

thus, 𝑥∗𝑖 ⪆ 𝑥
+
𝑖 for some 𝑖 ∈ 𝐽𝑞.

Let us now sketch the first step. By the assumption 𝐽𝑞 ⊆ 𝑵, one can show
𝑥+𝐽𝑞/𝑥𝐽𝑞 ≈ 𝜇

+/𝜇, and therefore

‖𝛿𝐽𝑞𝑥+𝐽𝑞 ‖ ≈
𝜇+

𝜇
‖𝛿𝐽𝑞𝑥𝐽𝑞 ‖ ≈

𝜇+

𝜇

√
𝜇 =

𝜇+
√
𝜇
.

The second part of the proof, namely, lower bounding ‖𝛿𝐽𝑞𝑥∗𝐽𝑞 ‖, is more difficult.
Here, we only sketch it for the special case when 𝐽𝑞 = [𝑛]. That is, we have a single
layer only; in particular, the LLS step is the same as the affine scaling step Δ𝑥ll = Δ𝑥a.
The general case of multiple layers follows by making use of Lemma 4.3.10, i.e.
exploiting that for a sufficiently small ℓ𝛿 (J ), the LLS step is close to the affine
scaling step.

Hence, assume that Δ𝑥ll = Δ𝑥a. Using the equivalent definition of the affine
scaling step (4.18) as a minimum-norm point, we have ‖𝛿𝑥∗‖ ≥ ‖𝛿(𝑥 + Δ𝑥ll)‖ =√
𝜇‖Rxll‖ = √𝜇𝜉 ll

J . From Lemma 4.3.6, 𝜇+/𝜇 ≤ √𝑛𝜀a(𝑤)/𝛽 ≤ √𝑛𝜉 ll
J /𝛽. Thus, we

see that ‖𝛿𝑥∗‖ ≥ 𝛽𝜇+/(√𝑛𝜇).
The final statement on lower bounding 𝜚𝜇+ (ℓ, ℓ′) ≥ −|𝐽𝑞 | for any ℓ, ℓ′ ∈ 𝐽𝑞 fol-

lows by showing that 𝛿+ℓ/𝛿+ℓ′ remains close to 𝛿ℓ/𝛿ℓ′, and hence the values of 𝜅𝜇+ (ℓ, ℓ′)
and 𝜅𝜇 (ℓ, ℓ′) are sufficiently close for indices on the same layer (Lemma 4.6.1).
Lemma 4.4.5 (Proof on p. 181). Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ N (𝛽) for 𝛽 ∈ (0, 1/8], and let
J = (𝐽1, . . . , 𝐽𝑝) be a 𝛿(𝑤)-balanced partition. Assume that 𝜉 ll

J (𝑤) < 4𝛾𝑛, and
let 𝑤+ = (𝑥+, 𝑦+, 𝑠+) ∈ N (2𝛽) be the next iterate obtained by the LLS step with
𝜇+ = 𝜇(𝑤+) and assume 𝜇+ > 0. If ℓ𝛿+ (J ) > 4𝛾𝑛, then there exist two layers 𝐽𝑞 and
𝐽𝑟 and 𝑖 ∈ 𝐽𝑞 and 𝑗 ∈ 𝐽𝑟 such that 𝑥∗𝑖 ≥ 𝑥+𝑖 /(8𝑛3/2), and 𝑠∗𝑗 ≥ 𝑠+𝑗/(8𝑛3/2). Further,
𝜚𝜇
+ (𝑖, 𝑗) ≥ −|𝐽𝑞∪𝐽𝑟 |, and for all ℓ, ℓ′ ∈ 𝐽𝑞∪𝐽𝑟 , ℓ ≠ ℓ′ we haveΨ𝜇 (ℓ, ℓ′) ≤ |𝐽𝑞∪𝐽𝑟 |.
Consider now any ℓ ∈ 𝐽𝑘 ⊆ 𝑩. Then, since Rxll

ℓ is very close to 1, 𝑥+ℓ ≈ 𝑥ℓ ; on
the other hand 𝑠+ℓ will “shoot down” close to the small value Rsll

ℓ · 𝑠ℓ . Conversely, for
ℓ ∈ 𝐽𝑘 ⊆ 𝑵, 𝑠+ℓ ≈ 𝑠ℓ , and 𝑥+ℓ will “shoot down” to a small value.

The key step of the analysis is showing that the increase in ℓ𝛿+ (J ) can be attributed
to an 𝑵-layer 𝐽𝑟 “crashing into” a 𝑩-layer 𝐽𝑞. That is, we show the existence of an
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edge (𝑖′, 𝑗 ′) ∈ 𝐸𝛿+,𝛾/(4𝑛) for 𝑖′ ∈ 𝐽𝑞 and 𝑗 ′ ∈ 𝐽𝑟 , where 𝑟 < 𝑞 and 𝐽𝑞 ⊆ 𝑩, 𝐽𝑟 ⊆ 𝑵.
This can be achieved by analyzing the matrix 𝐵 used in the subroutine Verify-Lift.

For the layers 𝐽𝑞 and 𝐽𝑟 , we can use Lemma 4.4.2 to show that there exists an
𝑖 ∈ 𝐽𝑞 where 𝑥∗𝑖 /𝑥𝑖 is lower bounded, and there exists a 𝑗 ∈ 𝐽𝑟 where 𝑠∗𝑗/𝑠 𝑗 is lower
bounded. The lower bound on 𝜚𝜇+ (𝑖, 𝑗) and the upper bounds on the Ψ𝜇 (ℓ, ℓ′) values
can be shown by tracking the changes between the 𝜅 𝛿 (ℓ, ℓ′) and 𝜅 𝛿+ (ℓ, ℓ′) values,
and applying Lemma 4.4.1 both at 𝑤 and at 𝑤+.

Proof of Theorem 4.3.16. We analyze the overall potential function Ψ(𝜇). By defini-
tion, 0 ≤ Ψ(𝜇) ≤ 𝑛(𝑛 − 1)(log2 𝑛 + 1), and if 𝜇′ < 𝜇 then Ψ(𝜇′) ≥ Ψ(𝜇). By the
iteration at 𝜇 we mean the iteration where the normalized duality gap of the current
iterate is 𝜇.

If 𝜇+ = 0 at the end of an iteration, the algorithm terminates with an optimal
solution. Recall from Lemma 4.3.10(v) that this happens if and only if 𝜀ll(𝑤) = 0 at
a certain iteration.

From now on, assume that 𝜇+ > 0. We distinguish three cases at each iteration.
These cases are well-defined even at iterations where affine scaling steps are used. At
such iterations, 𝜉 ll

J (𝑤) still refers to the LLS residuals, even if these have not been
computed by the algorithm.

(i) 𝜉 ll
J (𝑤) ≥ 4𝛾𝑛;

(ii) 𝜉 ll
J (𝑤) < 4𝛾𝑛 and ℓ𝛿+ (J ) ≤ 4𝛾𝑛; and

(iii) 𝜉 ll
J (𝑤) < 4𝛾𝑛 and ℓ𝛿+ (J ) > 4𝛾𝑛.

Recall that the algorithm uses an LLS direction instead of the affine scaling
direction whenever 𝜀a(𝑤) < 10𝑛3/2𝛾. Consider now the case when an affine scaling
direction is used, that is, 𝜀a(𝑤) ≥ 10𝑛3/2𝛾. According to Lemma 4.3.10(ii), ‖Rxll −
Rxa‖, ‖Rsll − Rsa‖ ≤ 6𝑛3/2𝛾. This implies that 𝜉 ll

J (𝑤) ≥ 4𝑛3/2𝛾 ≥ 4𝑛𝛾. Therefore,
in cases (ii) and (iii), an LLS step will be performed.

Starting with any given iteration, in each case we will identify a set 𝐽 ⊆ [𝑛] of
indices with |𝐽 | > 1, and start a phase of𝑂 (√𝑛|𝐽 | log( �̄�∗ + 𝑛)) iterations (that can be
either affine scaling or LLS steps). In each phase, we will guarantee that Ψ increases
by at least |𝐽 | − 1. As we can partition the union of all iterations into disjoint phases,
this yields the bound 𝑂 (𝑛2.5 log 𝑛 log( �̄�∗ + 𝑛)) on the total number of iterations.

We now consider each of the cases. We always let 𝜇 denote the normalized duality
gap at the current iteration, and we let 𝑞 ∈ [𝑝] be the layer such that 𝜉 ll

J (𝑤) = 𝜉
ll
𝐽𝑞
(𝑤).
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Case (i): 𝜉 ll
J (𝑤) ≥ 4𝛾𝑛. Lemma 4.4.2 guarantees the existence of 𝑥𝑖 , 𝑠 𝑗 ∈ 𝐽𝑞 such

that 𝑥∗𝑖 /𝑥𝑖 , 𝑠∗𝑗/𝑠 𝑗 ≥ 4𝛾𝑛/(3√𝑛) > 1/(210𝑛5.5). Further, according to Lemma 4.4.1,
𝜚𝜇 (𝑖, 𝑗) ≥ −|𝐽𝑞 |. Thus, Lemma 4.4.3 is applicable for 𝐽 = 𝐽𝑞. The phase starting
at 𝜇 comprises 𝑂 (√𝑛|𝐽𝑞 | log( �̄�∗ + 𝑛)) iterations, after which we get a normalized
duality gap 𝜇′ such that Ψ𝜇′ (𝑖, 𝑗) ≥ 2|𝐽𝑞 |, and for each ℓ ∈ [𝑛] \ {𝑖, 𝑗}, either
Ψ𝜇

′ (𝑖, ℓ) ≥ 2|𝐽𝑞 |, or Ψ𝜇′ (ℓ, 𝑗) ≥ 2|𝐽𝑞 |.
We can take advantage of these bounds for indices ℓ ∈ 𝐽𝑞. Again by Lemma 4.4.1,

for any ℓ, ℓ′ ∈ 𝐽𝑞, we have Ψ𝜇 (ℓ, ℓ′) ≤ 𝜚𝜇 (ℓ, ℓ′) ≤ |𝐽𝑞 |. Thus, there are at least
|𝐽𝑞 | − 1 pairs of indices (ℓ, ℓ′) for which Ψ𝜇 (ℓ, ℓ′) increases by at least |𝐽𝑞 | between
iterations at 𝜇 and 𝜇′.

We note that this analysis works regardless whether an LLS step or an affine
scaling step was performed in the iteration at 𝜇.

Case (ii): 𝜉 ll
J (𝑤) < 4𝛾𝑛 and ℓ𝛿+ (J ) ≤ 4𝛾𝑛. As explained above, in this case we

perform an LLS step in the iteration at 𝜇, and we let 𝑤+ denote the iterate obtained by
the LLS step. For 𝐽 = 𝐽𝑞, Lemma 4.4.4 guarantees the existence of 𝑖, 𝑗 ∈ 𝐽𝑞 such that
𝑥∗𝑖 /𝑥+𝑖 , 𝑠∗𝑗/𝑠+𝑗 > 𝛽/(16𝑛3/2), and further, 𝜚𝜇+ (𝑖, 𝑗) > −|𝐽𝑞 |. We can therefore apply
Lemma 4.4.3. The phase starting at 𝜇 includes the LLS step leading to 𝜇+ (and the
subsequent centering step), and the additional 𝑂 (√𝑛|𝐽𝑞 | log( �̄�∗ + 𝑛)) iterations (𝛽 is
a fixed constant in Algorithm 4) as in Lemma 4.4.3. As in Case I, we get the desired
potential increase compared to the potentials at 𝜇 in layer 𝐽𝑞.

Case (iii): 𝜉 ll
J (𝑤) < 4𝛾𝑛 and ℓ𝛿+ (J ) > 4𝛾𝑛. Again, the iteration at 𝜇 will use an

LLS step. We apply Lemma 4.4.5, and set 𝐽 = 𝐽𝑞∪ 𝐽𝑟 as in the lemma. The argument
is the same as in Case II, using that Lemma 4.4.5 explicitly states that Ψ𝜇 (ℓ, ℓ′) ≤ |𝐽 |
for any ℓ, ℓ′ ∈ 𝐽, ℓ ≠ ℓ′. □

4.4.1 The iteration complexity bound for the Vavasis-Ye algorithm

We now show that the potential analysis described above also gives an improved
bound 𝑂 (𝑛2.5 log 𝑛 log( �̄�𝐴 + 𝑛)) for the original VY algorithm [198].

We recall the VY layering step. Order the variables via 𝜋 such that 𝛿𝜋 (1) ≤
𝛿𝜋 (2) ≤ . . . ≤ 𝛿𝜋 (𝑛) . The layers will be consecutive sets in the ordering; a new layer
starts with 𝜋(𝑖 + 1) each time 𝛿𝜋 (𝑖+1) > 𝑔𝛿𝜋 (𝑖) , for a parameter 𝑔 = poly(𝑛) �̄�.

As outlined in the Introduction, the VY algorithm can be seen as a special
implementation of our algorithm by setting 𝜅𝑖 𝑗 = 𝑔𝛾/𝑛. With these edge weights,
we have that 𝜅 𝛿𝑖 𝑗 ≥ 𝛾/𝑛 precisely if 𝑔𝛿 𝑗 ≥ 𝛿𝑖 . Note that, for simplicity, in the
Introduction we used 𝑔𝑥𝑖 ≥ 𝑥 𝑗 instead. These quantities are almost the same when in
close proximity to the central path.
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With these edge weights, it is easy to see that our Layering(𝛿, 𝜅) subroutine
finds the exact same components as VY. Moreover, the layers will be the initial
strongly connected components 𝐶𝑖 of 𝐺 𝛿,𝛾/𝑛: due to the choice of 𝑔, this partition is
automatically 𝛿-balanced. There is no need to call Verify-Lift.

The essential difference compared to our algorithm is that the values 𝜅𝑖 𝑗 = 𝑔𝛾/𝑛
are not lower bounds on 𝜅𝑖 𝑗 as we require, but upper bounds instead. This is convenient
to simplify the construction of the layering. On the negative side, the strongly
connected components of �̂� 𝛿,𝛾/𝑛 may not anymore be strongly connected in 𝐺 𝛿,𝛾/𝑛.
Hence, we cannot use Lemma 4.4.1, and consequently, Lemma 4.4.3 does not hold.

Still, the 𝜅𝑖 𝑗 bounds are overestimating 𝜅𝑖 𝑗 by at most a factor poly(𝑛) �̄�. Therefore,
the strongly connected components of �̂� 𝛿,𝑛/𝛾 are strongly connected in𝐺 𝛿,𝜎 for some
𝜎 = 1/(poly(𝑛) �̄�).

Hence, the entire argument described in this section is applicable to the VY
algorithm, with a different potential function defined with �̄� instead of �̄�∗. This is
the reason why the iteration bound in Lemma 4.4.3, and therefore in Theorem 4.3.16,
also changes to �̄� dependency.

It is worth noting that due to the overestimation of the 𝜅𝑖 𝑗 values, the VY algorithm
uses a coarser layering than our algorithm. Our algorithm splits up the VY layers into
smaller parts so that ℓ𝛿 (J ) remains small, but within each part, the gaps between the
variables are bounded as a function of �̄�∗𝐴 instead of �̄�𝐴.

4.5 Properties of the layered least square step

This section is dedicated to the proofs of Proposition 4.3.8 on the duality of lifting
scores and Lemma 4.3.10 on properties of LLS steps.

Proposition 4.3.8 (Repetition). For a linear subspace𝑊 ⊆ R𝑛 and index set 𝐼 ⊆ [𝑛]
with 𝐽 = [𝑛] \ 𝐼,

‖𝐿𝑊𝐼 ‖ ≤ max{1, ‖𝐿𝑊 ⊥𝐽 ‖}.

In particular, ℓ𝑊 (𝐼) = ℓ𝑊 ⊥ (𝐽).

Proof. We first treat the case where 𝜋𝐼 (𝑊) = {®0} or 𝜋𝐽 (𝑊⊥) = {®0}. If 𝜋𝐼 (𝑊) = {®0}
then ‖𝐿𝑊𝐼 ‖ = ℓ𝑊 (𝐼) = 0. Furthermore, in this case R𝐼 = 𝜋𝐼 (𝑊)⊥ = 𝜋𝐼 (𝑊⊥ ∩ R𝑛𝐼 ),
and thus 𝜋R𝑛

𝐽
(𝑊⊥) ⊆ 𝑊⊥. In particular, ‖𝐿𝑊𝐽 ‖ ≤ 1 and ℓ𝑊 ⊥ (𝐽) = 0. Symmetrically,

if 𝜋𝐽 (𝑊⊥) = {®0} then ‖𝐿𝑊 ⊥𝐽 ‖ = ℓ𝑊
⊥ (𝐽) = 0, ‖𝐿𝑊𝐼 ‖ ≤ 1 and ℓ𝑊 (𝐼) = 0.

We now restrict our attention to the case where both 𝜋𝐼 (𝑊), 𝜋𝐽 (𝑊⊥) ≠ {®0}.
Under this assumption, we show that ‖𝐿𝑊𝐼 ‖ = ‖𝐿𝑊

⊥
𝐽 ‖ and thus that ℓ𝑊 (𝐼) = ℓ𝑊 ⊥ (𝐽).

Note that by non-emptyness, we clearly have that ‖𝐿𝑊𝐼 ‖, ‖𝐿𝑊
⊥

𝐽 ‖ ≥ 1.
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We formulate a more general claim. Let {®0} ≠ 𝑈,𝑉 ⊆ R𝑛 be linear subspaces
such that𝑈 +𝑉 = R𝑛 and𝑈 ∩𝑉 = {®0}. Note that for the orthogonal complements in
R𝑛, we also have {®0} ≠ 𝑈⊥, 𝑉⊥,𝑈⊥ +𝑉⊥ = R𝑛 and𝑈⊥ ∩𝑉⊥ = {®0}.

Claim 4.5.1. Let {®0} ≠ 𝑈,𝑉 ⊆ R𝑛 be linear subspaces such that 𝑈 + 𝑉 = R𝑛 and
𝑈∩𝑉 = {®0}. Thus, for 𝑧 ∈ R𝑛, there are unique decompositions 𝑧 = 𝑢 + 𝑣 with 𝑢 ∈ 𝑈,
𝑣 ∈ 𝑉 and 𝑧 = 𝑢′ + 𝑣′ with 𝑢′ ∈ 𝑈⊥ and 𝑣′ ∈ 𝑉⊥. Let 𝑇 : R𝑛 → 𝑉 be the map sending
𝑇𝑧 = 𝑣. Let 𝑇 ′ : R𝑛 → 𝑉⊥ be the map sending 𝑇 ′𝑧 = 𝑣′. Then, ‖𝑇 ‖ = ‖𝑇 ′‖.

Proof. To prove the statement, we claim that it suffices to show that if ‖𝑇 ‖ > 1 then
‖𝑇 ′‖ ≥ ‖𝑇 ‖. To prove sufficiency, note that by symmetry, we also get that if ‖𝑇 ′‖ > 1
then ‖𝑇 ‖ ≥ ‖𝑇 ′‖.Note that 𝑉,𝑉⊥ ≠ {®0} by assumption, and 𝑇𝑧 = 𝑧 for 𝑧 ∈ 𝑉 ,
𝑇 ′𝑧 = 𝑧 for 𝑧 ∈ 𝑉⊥. Thus, we always have ‖𝑇 ‖, ‖𝑇 ′‖ ≥ 1, and therefore the equality
‖𝑇 ‖ = ‖𝑇 ′‖ must hold in all cases. We now assume ‖𝑇 ‖ > 1 and show ‖𝑇 ′‖ ≥ ‖𝑇 ‖.

Representing 𝑇 as an 𝑛 × 𝑛 matrix, we write 𝑇 =
∑𝑘
𝑖=1 𝜎𝑖𝑣𝑖𝑢

T
𝑖 using a singular

value decomposition with 𝜎1 ≥ · · · ≥ 𝜎𝑘 > 0. As such, 𝑣1, . . . , 𝑣𝑘 is an orthonormal
basis of 𝑉 , since the range(𝑇) = 𝑉 , and 𝑢1, . . . , 𝑢𝑘 is an orthonormal basis of 𝑈⊥,
since Ker(𝑇) = 𝑈, noting that we have restricted to the singular vectors associated
with positive singular values. By assumption, we have that ‖𝑇 ‖ = ‖𝑇𝑢1‖ = 𝜎1 > 1.

The proof is complete by showing that

‖𝑇 ′(𝑣1 − 𝑢1/𝜎1)‖ ≥ 𝜎1‖𝑣1 − 𝑢1/𝜎1‖, (4.33)

and that ‖𝑣1−𝑢1/𝜎1‖ > 0, since then the vector 𝑣1−𝑢1/𝜎1 will certify that ‖𝑇 ′‖ ≥ 𝜎1.
The map 𝑇 is a linear projection with 𝑇2 = 𝑇 . Hence 𝑢𝑖T𝑣𝑖 = 𝜎−1

𝑖 and 𝑢𝑖T𝑣 𝑗 = 0
for all 𝑖 ≠ 𝑗 .

We show that 𝑣1 − 𝜎−1
1 𝑢1 can be decomposed as 𝑣1 − 𝜎1𝑢1 + (𝜎1 − 𝜎−1

1 )𝑢1 such
that 𝑣1 −𝜎1𝑢1 ∈ 𝑉⊥ and (𝜎1 −𝜎−1

1 )𝑢1 ∈ 𝑈⊥. Therefore, 𝑇 ′(𝑣1 −𝜎−1
1 𝑢1) = 𝑣1 −𝜎1𝑢1.

The containment (𝜎1 −𝜎−1
1 )𝑢1 ∈ 𝑈⊥ is immediate. To show 𝑣1 −𝜎1𝑢1 ∈ 𝑉⊥, we

need that 𝑣1 − 𝜎1𝑢1
T𝑣𝑖 = 0 for all 𝑖 ∈ [𝑘]. For 𝑖 ≥ 2, this is true since 𝑢𝑖T𝑣 𝑗 = 0 and

𝑣𝑖
T𝑣 𝑗 = 0. For 𝑖 = 1, we have 𝑣1 − 𝜎1𝑢1

T𝑣1 = 0 since ‖𝑣1‖ = 1 and 𝑢1
T𝑣1 = 𝜎−1

1 .
Consequently, 𝑇 ′(𝑣1 − 𝜎−1

1 𝑢1) = 𝑣1 − 𝜎1𝑢1.

We compute


𝑣1 − 𝜎−1

1 𝑢1


 =

√
1 − 𝜎−2

1 > 0, since 𝜎1 > 1, and ‖𝑣1 − 𝜎1𝑢1‖ =√
𝜎2

1 − 1. This verifies (4.33), and thus ‖𝑇 ′‖ ≥ 𝜎1 = ‖𝑇 ‖. □

To prove the lemma, we define J = (𝐽, 𝐼), 𝑈 = 𝑊⊥J ,1 ⊕ 𝑊
⊥
J ,2 and 𝑉 = 𝑊

and let 𝑇 : R𝑛 → 𝑉 and 𝑇 ′ : R𝑛 → 𝑉⊥ be as in Claim 4.5.1. By assumption,
{®0} ≠ 𝜋𝐼 (𝑊) ⇒ {®0} ≠ 𝑉 and {®0} ≠ 𝜋𝐽 (𝑊⊥) = 𝑊⊥J ,1 ⇒ {®0} ≠ 𝑈. Applying
Lemma 4.3.7, 𝑈,𝑉 satisfy the conditions of Claim 4.5.1 and 𝑇 = LLS𝑊 ,1

J . In
particular, ‖𝑇 ′‖ = ‖𝑇 ‖. Using the fact that 𝑈⊥ = 𝑊J ,1 ⊕ 𝑊J ,2 and 𝑉⊥ = 𝑊⊥, we
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similarly get that 𝑇 ′ = LLS𝑊
⊥,1

J̄ , where J̄ = (𝐼, 𝐽). By (4.22) we have, for any
𝑡 ∈ 𝜋R𝑛

𝐼
(𝑊), that 𝑇𝑡 = LLS𝑊 ,1

J (𝑡) = 𝐿𝑊𝐼 (𝑡𝐼 ). Thus ‖𝑇 ‖ ≥ ‖𝐿𝑊𝐼 ‖ ≥ 1.
To finish the proof of the lemma from the claim, we show that ‖𝑇 ‖ ≤ ‖𝐿𝑊𝐼 ‖. By

a symmetric argument we get ‖𝑇 ′‖ = ‖𝐿𝑊 ⊥𝐽 ‖.
If 𝑥 ∈ R𝑛𝐽 , then 𝑇𝑥 ∈ 𝑊 ∩ R𝑛𝐽 because any 𝑠 ∈ 𝑊⊥J ,2, 𝑡 ∈ 𝜋𝐼 (𝑊) with 𝑠 + 𝑡 = ®0

must have 𝑠 = 𝑡 = ®0 since 𝑊⊥J ,2 is orthogonal to 𝜋𝐼 (𝑊). But 𝑊 ∩ R𝑛𝐽 and 𝑊⊥J ,1 are
orthogonal, so ‖𝑇𝑥‖ ≤ ‖𝑥‖ because 𝑥 = 𝑇𝑥+ (𝑥−𝑇𝑥) is an orthogonal decomposition.

If 𝑦 ∈ R𝑛𝐼 , then 𝑦𝐽 = ®0 and hence (𝑇𝑦)𝐽 = (𝑇𝑦 − 𝑦)𝐽 . Since (𝑇𝑦 − 𝑦)𝐽 ∈ 𝑊⊥J ,1 =
𝜋𝐽 (𝑊 ∩ R𝑛𝐽 )⊥, we see that 𝑇𝑦 ∈ (𝑊 ∩ R𝑛𝐽 )⊥. As such, for any 𝑥 ∈ R𝑛𝐽 , 𝑦 ∈ R𝑛𝐼 , we
see that 𝑥 ⊥ 𝑦 and 𝑇𝑥 ⊥ 𝑇𝑦. For 𝑥, 𝑦 ≠ ®0, we thus have that

‖𝑇 (𝑥 + 𝑦)‖2
‖𝑥 + 𝑦‖2

=
‖𝑇 (𝑥)‖2 + ‖𝑇 (𝑦)‖2
‖𝑥‖2 + ‖𝑦2‖

≤ max
{
‖𝑇 (𝑥)‖2
‖𝑥‖2

,
‖𝑇 (𝑦)‖2
‖𝑦‖2

}
≤ max

{
1,
‖𝑇 (𝑦)‖2
‖𝑦‖2

}
.

Since ‖𝐿𝑊𝐼 ‖ ≥ 1, we must have that ‖𝑇𝑡‖/‖𝑡‖ is maximized by some 𝑡 ∈ R𝑛𝐼 .
From Ker(𝑇) = 𝑈 it is clear that ‖𝑇𝑡‖/‖𝑡‖ is maximized by some 𝑡 ∈ 𝑈⊥. Now,
𝑈⊥∩R𝑛𝐼 = 𝜋R𝑛

𝐼
(𝑊), so any 𝑡 maximizing ‖𝑇𝑡‖/‖𝑡‖ satisfies 𝑇𝑡 = 𝐿𝑊𝐼 (𝑡𝐼 ). Therefore,

‖𝐿𝑊𝐼 ‖ ≥ ‖𝑇 ‖. □

Our next goal is to show Lemma 4.3.10: for a layering with small enough ℓ𝛿 (J ),
the LLS step approximately satisfies (4.14), that is, 𝛿Δ𝑥ll + 𝛿−1Δ𝑠ll ≈ −𝑥1/2𝑠1/2. This
also enables us to derive bounds on the norm of the residuals and on the step-length.
We start by proving a few auxiliary technical claims. The next simple lemma allows
us to take advantage of low lifting scores in the layering.

Lemma 4.5.2. Let 𝑢, 𝑣 ∈ R𝑛 be two vectors such that 𝑢 − 𝑣 ∈ 𝑊 . Let 𝐼 ⊆ [𝑛], and
𝛿 ∈ R𝑛++. Then there exists a vector 𝑢′ ∈ 𝑊 + 𝑢 satisfying 𝑢′𝐼 = 𝑣𝐼 and

‖𝛿 [𝑛]\𝐼 (𝑢′[𝑛]\𝐼 − 𝑢 [𝑛]\𝐼 )‖ ≤ ℓ
𝛿 (𝐼)‖𝛿𝐼 (𝑢𝐼 − 𝑣𝐼 )‖ .

Proof. We let
𝑢′ := 𝑢 + 𝛿−1𝐿 𝛿𝐼 (𝛿𝐼 (𝑣𝐼 − 𝑢𝐼 )) .

The claim follows by the definition of the lifting score ℓ𝛿 (𝐼). □

The next lemma will be the key tool to prove Lemma 4.3.10. It is helpful to recall
the characterization of the LLS step in Section 4.3.4.
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Lemma 4.5.3. Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ N (𝛽) for 𝛽 ∈ (0, 1/4], let 𝜇 = 𝜇(𝑤) and 𝛿 = 𝛿(𝑤).
Let J = (𝐽1, . . . , 𝐽𝑝) be a 𝛿(𝑤)-balanced layering, and let Δ𝑤ll = (Δ𝑥ll,Δ𝑦ll,Δ𝑠ll)
denote the corresponding LLS direction. Let Δ𝑥 ∈ ⊕𝑝

𝑘=1𝑊J ,𝑘 and Δ𝑠 ∈
⊕𝑝
𝑘=1𝑊

⊥
J ,𝑘

as in (4.26) and (4.27), that is

𝛿Δ𝑥ll + 𝛿−1Δ𝑠 + 𝑥1/2𝑠1/2 = ®0 , (4.34)

𝛿Δ𝑥 + 𝛿−1Δ𝑠ll + 𝑥1/2𝑠1/2 = ®0. (4.35)

Then, there exist vectors Δ𝑥 ∈ ⊕𝑝
𝑘=1𝑊J ,𝑘 and Δ𝑠 ∈ ⊕𝑝

𝑘=1𝑊
⊥
J ,𝑘 such that

‖𝛿𝐽𝑘 (Δ𝑥𝐽𝑘 − Δ𝑥ll
𝐽𝑘
)‖ ≤ 2𝑛ℓ𝛿 (J )√𝜇 ∀𝑘 ∈ [𝑝] and (4.36)

‖𝛿−1
𝐽𝑘
(Δ𝑠𝐽𝑘 − Δ𝑠ll𝐽𝑘 )‖ ≤ 2𝑛ℓ𝛿 (J )√𝜇 ∀𝑘 ∈ [𝑝] . (4.37)

Proof. Throughout, we use the shorthand notation 𝜆 = ℓ𝛿 (J ). We construct Δ𝑥; one
can obtain Δ𝑠, using that the reverse layering has lifting score 𝜆 in 𝑊⊥Diag(𝛿−1)
according to Lemma 4.3.9.

We proceed by induction, constructing Δ𝑥𝐽𝑘 ∈ 𝑊J ,𝑘 for 𝑘 = 𝑝, 𝑝−1, . . . , 1. This
will be given as Δ𝑥𝐽𝑘 = Δ𝑥 (𝑘)𝐽𝑘 for a vector Δ𝑥 (𝑘) ∈ 𝑊 such that Δ𝑥 (𝑘)𝐽>𝑘

= ®0. We prove
the inductive hypothesis


𝛿𝐽≤𝑘 (

Δ𝑥 (𝑘)𝐽≤𝑘 − Δ𝑥
ll
𝐽≤𝑘

)


 ≤ 2𝜆
√
𝜇

𝑝∑
𝑞=𝑘+1

√
|𝐽𝑞 | . (4.38)

Note that (4.36) follows by restricting the norm on the LHS to 𝐽𝑘 and since the sum
on the RHS is ≤ 𝑛.

For 𝑘 = 𝑝, the RHS is 0. We simply set Δ𝑥 (𝑝) = Δ𝑥ll, that is, Δ𝑥𝐽𝑝 = Δ𝑥ll
𝐽𝑝

,
trivially satisfying the hypothesis. Consider now 𝑘 < 𝑝, and assume that we have a
Δ𝑥𝐽𝑘+1 = Δ𝑥 (𝑘+1)𝐽𝑘+1

satisfying (4.38) for 𝑘+1. From (4.34) and the induction hypothesis,
we get that

‖𝛿𝐽𝑘+1Δ𝑥𝐽𝑘+1 + 𝛿−1
𝐽𝑘+1

Δ𝑠𝐽𝑘+1 ‖ ≤ ‖𝑥
1/2
𝐽𝑘+1

𝑠1/2𝐽𝑘+1 ‖ + ‖𝛿𝐽𝑘+1 (Δ𝑥𝐽𝑘+1 − Δ𝑥
ll
𝐽𝑘+1
)‖

≤ ‖𝑥1/2
𝐽𝑘+1

𝑠1/2𝐽𝑘+1 ‖ + 2𝜆
√
𝜇

𝑝∑
𝑞=𝑘+2

√
|𝐽𝑞 | ≤

√
1 + 𝛽

√
𝜇 |𝐽𝑘+1 | + 2𝑛𝜆

√
𝜇 < 2

√
𝜇 |𝐽𝑘+1 | ,

using also that 𝑤 ∈ N (𝛽), Proposition 4.3.2, and the assumptions 𝛽 ≤ 1/4,
𝜆 ≤ 𝛽/(32𝑛2). Note that Δ𝑥𝐽𝑘+1 ∈ 𝑊J ,𝑘 and Δ𝑠𝐽𝑘+1 ∈ 𝑊⊥J ,𝑘 are orthogonal vectors.
The above inequality therefore implies

‖𝛿𝐽𝑘+1Δ𝑥𝐽𝑘+1 ‖ ≤ 2
√
𝜇 |𝐽𝑘+1 | .
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Let us now use Lemma 4.5.2 to obtain Δ𝑥 (𝑘) for 𝑢 = Δ𝑥 (𝑘+1) , 𝑣 = ®0, and 𝐼 = 𝐽>𝑘 .
That is, we get Δ𝑥 (𝑘)𝐽>𝑘

= ®0, Δ𝑥 (𝑘) ∈ 𝑊 , and

‖𝛿𝐽≤𝑘 (Δ𝑥
(𝑘)
𝐽≤𝑘
− Δ𝑥 (𝑘+1)𝐽≤𝑘

)‖ ≤ 𝜆‖𝛿𝐽>𝑘Δ𝑥
(𝑘+1)
𝐽>𝑘
‖

= 𝜆‖𝛿𝐽𝑘+1Δ𝑥𝐽𝑘+1 ‖ ≤ 2𝜆
√
𝜇 |𝐽𝑘+1 | .

By the triangle inequality and the induction hypothesis (4.38) for 𝑘 + 1,

‖𝛿𝐽≤𝑘 (Δ𝑥
(𝑘)
𝐽≤𝑘
− Δ𝑥ll

𝐽≤𝑘
)‖ ≤ ‖𝛿𝐽≤𝑘 (Δ𝑥

(𝑘)
𝐽≤𝑘
− Δ𝑥 (𝑘+1)𝐽≤𝑘

)‖ + ‖𝛿𝐽≤𝑘 (Δ𝑥
(𝑘+1)
𝐽≤𝑘

− Δ𝑥ll
𝐽≤𝑘
)‖

≤ 2𝜆
√
𝜇 |𝐽𝑘+1 | + 2𝜆

𝑝∑
𝑞=𝑘+2

√
𝜇 |𝐽𝑞 |,

yielding the induction hypothesis for 𝑘 . □

Lemma 4.3.10 (Repetition). Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ N (𝛽) for 𝛽 ∈ (0, 1/4], let 𝜇 = 𝜇(𝑤)
and 𝛿 = 𝛿(𝑤). Let J = (𝐽1, . . . , 𝐽𝑝) be a layering with ℓ𝛿 (J ) ≤ 𝛽/(32𝑛2), and
let Δ𝑤ll = (Δ𝑥ll,Δ𝑦ll,Δ𝑠ll) denote the LLS direction for the layering J . Then the
following properties hold.

(i) We have

‖𝛿𝐽𝑘Δ𝑥ll
𝐽𝑘
+ 𝛿−1

𝐽𝑘
Δ𝑠ll𝐽𝑘 + 𝑥

1/2
𝐽𝑘
𝑠1/2𝐽𝑘 ‖ ≤ 6𝑛ℓ𝛿 (J )√𝜇 , ∀𝑘 ∈ [𝑝], and (4.28)

‖𝛿Δ𝑥ll + 𝛿−1Δ𝑠ll + 𝑥1/2𝑠1/2‖ ≤ 6𝑛3/2ℓ𝛿 (J )√𝜇 . (4.29)

(ii) For the affine scaling direction Δ𝑤a = (Δ𝑥a,Δ𝑦a,Δ𝑠a),

‖Rxll − Rxa‖, ‖Rsll − Rsa‖ ≤ 6𝑛3/2ℓ𝛿 (J ) .

(iii) For the residuals of the LLS steps we have ‖Rxll‖, ‖Rsll‖ ≤
√

2𝑛. For each
𝑖 ∈ [𝑛], max{|Rxll

𝑖 |, |Rsll
𝑖 |} ≥ 1

2 −
3
4 𝛽.

(iv) Let 𝜀ll(𝑤) = max𝑖∈[𝑛] min{|Rxll
𝑖 |, |Rsll

𝑖 |}, and define the step length as

𝛼 := sup{𝛼′ ∈ [0, 1] : ∀�̄� ∈ [0, 𝛼′] : 𝑤 + �̄�Δ𝑤ll ∈ N (2𝛽)} .

We obtain the following bounds on the progress in the LLS step:

𝜇(𝑤 + 𝛼Δ𝑤ll) = (1 − 𝛼)𝜇 , and

𝛼 ≥ 1 − 3
√
𝑛𝜀ll(𝑤)
𝛽

.
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(v) We have 𝜀ll(𝑤) = 0 if and only if 𝛼 = 1. These are further equivalent to
𝑤 + Δ𝑤ll = (𝑥 + Δ𝑥ll, 𝑦 + Δ𝑦ll, 𝑠 + Δ𝑠ll) being an optimal solution to (4.1).

Proof. Again, we use 𝜆 = ℓ𝛿 (J ).
Part (i). Clearly, (4.28) implies (4.29). To show (4.28), we use Lemma 4.5.3 to
obtain Δ𝑥 and Δ𝑠 as in (4.36) and (4.37). We will also use Δ𝑥 ∈ ⊕𝑝

𝑘=1𝑊J ,𝑘 and
Δ𝑠 ∈ ⊕𝑝

𝑘=1𝑊
⊥
J ,𝑘 as in (4.34) and (4.35).

Select any layer 𝑘 ∈ [𝑝]. From (4.34), we get that

‖𝛿𝐽𝑘Δ𝑥𝐽𝑘 + 𝛿−1
𝐽𝑘
Δ𝑠𝐽𝑘 + 𝑥

1/2
𝐽𝑘
𝑠1/2𝐽𝑘 ‖ = ‖𝛿𝐽𝑘 (Δ𝑥𝐽𝑘 − Δ𝑥

ll
𝐽𝑘
)‖ ≤ 2𝑛𝜆

√
𝜇 . (4.39)

Similarly, from (4.35), we see that

‖𝛿−1
𝐽𝑘
Δ𝑠𝐽𝑘 + 𝛿𝐽𝑘Δ𝑥𝐽𝑘 + 𝑥

1/2
𝐽𝑘
𝑠1/2𝐽𝑘 ‖ = ‖𝛿

−1
𝐽𝑘
(Δ𝑠𝐽𝑘 − Δ𝑠ll𝐽𝑘 )‖ ≤ 2𝑛𝜆

√
𝜇 .

From the above inequalities, we see that

‖𝛿𝐽𝑘 (Δ𝑥𝐽𝑘 − Δ𝑥𝐽𝑘 ) + 𝛿−1
𝐽𝑘
(Δ𝑠𝐽𝑘 − Δ𝑠𝐽𝑘 )‖ ≤ 4𝑛𝜆

√
𝜇 .

Since 𝛿𝐽𝑘 (Δ𝑥𝐽𝑘 − Δ𝑥𝐽𝑘 ) and 𝛿−1
𝐽𝑘
(Δ𝑠𝐽𝑘 − Δ𝑠𝐽𝑘 ) are orthogonal vectors, we have

‖𝛿𝐽𝑘 (Δ𝑥𝐽𝑘 − Δ𝑥𝐽𝑘 )‖, ‖𝛿−1
𝐽𝑘
(Δ𝑠𝐽𝑘 − Δ𝑠𝐽𝑘 )‖ ≤ 4𝑛𝜆

√
𝜇 .

Together with (4.36), this yields ‖𝛿𝐽𝑘 (Δ𝑥ll
𝐽𝑘
− Δ𝑥𝐽𝑘 )‖ ≤ 6𝑛𝜆√𝜇. Combined with

(4.27), we get

‖𝛿𝐽𝑘Δ𝑥ll
𝐽𝑘
+ 𝛿−1

𝐽𝑘
Δ𝑠ll𝐽𝑘 + 𝑥

1/2
𝐽𝑘
𝑠1/2𝐽𝑘 ‖ = ‖𝛿𝐽𝑘 (Δ𝑥

ll
𝐽𝑘
− Δ𝑥𝐽𝑘 )‖ ≤ 6𝑛𝜆

√
𝜇 ,

thus, (4.28) follows.

Part (ii). Recall from Lemma 4.3.5(i) that √𝜇Rxa + √𝜇Rsa = 𝑥1/2𝑠1/2. From part
(i), we can similarly see that

‖√𝜇Rxll + √𝜇Rsll − 𝑥1/2𝑠1/2‖ ≤ 6𝑛3/2𝜆
√
𝜇 .

From these, we get

‖(Rxll − Rxa) + (Rsll − Rsa)‖ ≤ 6𝑛3/2𝜆 .

The claim follows since Rxll − Rxa ∈ Diag(𝛿)𝑊 and Rsll − Rsa ∈ Diag(𝛿−1)𝑊⊥ are
orthogonal vectors.

Part (iii). Both bounds follow from the previous part and Lemma 4.3.5(iii), using
the assumption ℓ𝛿 (J ) ≤ 𝛽/(32𝑛2).
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Part (iv). Let 𝑤+ = 𝑤 + 𝛼Δ𝑤ll. We need to find the largest value 𝛼 > 0 such
that 𝑤+ ∈ N (2𝛽). To begin, we first show that the normalized duality gap 𝜇(𝑤+) =
(1 − 𝛼)𝜇 for any 𝛼 ∈ R. For this purpose, we use the decomposition:

(𝑥 +𝛼Δ𝑥ll)(𝑠 +𝛼Δ𝑠ll) = (1−𝛼)𝑥𝑠 +𝛼(𝑥 +Δ𝑥ll)(𝑠 +Δ𝑠ll) −𝛼(1−𝛼)Δ𝑥llΔ𝑠ll. (4.40)

Recall from Part (i) that there exists Δ𝑥 ∈ ⊕𝑝
𝑘=1𝑊J ,𝑘 and Δ𝑠 ∈ ⊕𝑝

𝑘=1𝑊
⊥
J ,𝑘 as in

(4.34) and (4.35) such that 𝛿Δ𝑥ll + 𝛿−1Δ𝑠 = −𝛿𝑥 and 𝛿Δ𝑥 + 𝛿−1Δ𝑠ll = −𝛿−1𝑠. In
particular, 𝑥+Δ𝑥ll = 𝛿−2Δ𝑠 and 𝑠+Δ𝑠ll = 𝛿2Δ𝑥. Noting that Δ𝑥ll ⊥ Δ𝑠ll and Δ𝑥 ⊥ Δ𝑠,
taking the average of the coordinates on both sides of (4.40), we get that

𝜇(𝑤 + 𝛼Δ𝑤ll) = (1 − 𝛼)𝜇(𝑤) + 𝛼〈𝑥 + Δ𝑥ll, 𝑠 + Δ𝑠ll〉/𝑛 − 𝛼(1 − 𝛼)〈Δ𝑥ll,Δ𝑠ll〉/𝑛
= (1 − 𝛼)𝜇(𝑤) + 𝛼〈𝛿−2Δ𝑠, 𝛿2Δ𝑥〉/𝑛
= (1 − 𝛼)𝜇(𝑤), (4.41)

as needed.
Let 𝜀 := 𝜀ll(𝑤). To obtain the desired lower bound on the step-length, given (4.41)

it suffices to show that for all 0 ≤ 𝛼 < 1 − 3
√
𝑛𝜀
𝛽 that





 (𝑥 + 𝛼Δ𝑥ll) (𝑠 + 𝛼Δ𝑠ll)
(1 − 𝛼)𝜇 − ®1





 ≤ 2𝛽 . (4.42)

We will need a bound on the product of the LLS residuals:



RxllRsll − 1
𝜇
Δ𝑥llΔ𝑠ll





 = 



𝑥1/2𝑠1/2
√
𝜇
· 𝛿Δ𝑥

ll + 𝛿−1Δ𝑠ll + 𝑥1/2𝑠1/2
√
𝜇






≤ 6(1 + 2𝛽)𝑛3/2𝜆 ≤ 𝛽

4
,

(4.43)

using Proposition 4.3.1, part (i), and the assumptions 𝜆 ≤ 𝛽/(32𝑛2), 𝛽 ≤ 1/4.
Another useful bound will be

‖RxllRsll‖2 =
∑
𝑖∈[𝑛]

��Rxll
𝑖

��2 ��Rsll
𝑖

��2 ≤ 𝜀2 ∑
𝑖∈[𝑛]

max
{ ��Rxll

𝑖

��2 , ��Rsll
𝑖

��2 }
≤ 𝜀2(‖Rxll‖2 + ‖Rsll‖2) ≤ 2𝑛𝜀2 .

(4.44)
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The last inequality uses part (ii). We are ready to get a bound as in (4.42).


 (𝑥 + 𝛼Δ𝑥ll)(𝑠 + 𝛼Δ𝑠ll)
(1 − 𝛼)𝜇 − ®1





≤ 𝛽 +




 𝛼

(1 − 𝛼)𝜇 (𝑥 + Δ𝑥
ll) (𝑠 + Δ𝑠ll) + 𝛼

𝜇
(𝑥𝑠 + 𝑥Δ𝑠ll + 𝑠Δ𝑥ll)





≤ 𝛽 + 𝛼

1 − 𝛼 ‖RxllRsll‖ + 𝛼




RxllRsll − 1

𝜇
Δ𝑥llΔ𝑠ll






≤ 𝛽 +

√
2𝑛𝜀

1 − 𝛼 +
𝛽

4
≤ 5

4
𝛽 +
√

2𝑛𝜀
1 − 𝛼 .

This value is ≤ 2𝛽 whenever 2
√
𝑛𝜀/(1 − 𝛼) ≤ (3/4)𝛽⇐ 𝛼 < 1 − 3

√
𝑛𝜀
𝛽 , as needed.

Part (v). From part (iv), it is immediate that 𝜀ll(𝑤) = 0 implies 𝛼 = 1. If 𝛼 = 1, we
have that 𝑤 + Δ𝑤ll is the limit of (strictly) feasible solutions to (4.1) and thus is also
a feasible solution. Optimality of 𝑤 + Δ𝑤ll now follows from Part (iv), since 𝛼 = 1
implies 𝜇(𝑤+Δ𝑤ll) = 0. The remaining implication is that if 𝑤+Δ𝑤ll is optimal, then
𝜀ll(𝑤) = 0. Recall that Rxll

𝑖 = 𝛿𝑖 (𝑥𝑖 + Δ𝑥ll
𝑖 )/
√
𝜇 and Rsll

𝑖 = 𝛿−1
𝑖 (𝑠𝑖 + Δ𝑠ll𝑖 )/

√
𝜇. The

optimality of 𝑤 +Δ𝑤ll means that for each 𝑖 ∈ [𝑛], either 𝑥𝑖 +Δ𝑥ll
𝑖 =
®0 or 𝑠𝑖 +Δ𝑠ll𝑖 = ®0.

Therefore, 𝜀ll(𝑤) = 0. □

4.6 Proofs of the main lemmas for the potential analysis

Lemma 4.4.2 (Repetition). Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ N (𝛽) for 𝛽 ∈ (0, 1/8] and let
𝑤∗ = (𝑥∗, 𝑦∗, 𝑠∗) be the optimal solution corresponding to 𝜇∗ = 0 on the central path.
Let further J = (𝐽1, . . . , 𝐽𝑝) be a 𝛿(𝑤)-balanced layering (Definition 4.3.13), and
let Δ𝑤ll = (Δ𝑥ll,Δ𝑦ll,Δ𝑠ll) be the corresponding LLS direction. Then the following
statement holds for every 𝑞 ∈ [𝑝]:

(i) There exists 𝑖 ∈ 𝐽𝑞 such that

𝑥∗𝑖 ≥
2𝑥𝑖
3
√
𝑛
· (‖Rxll

𝐽𝑞
‖ − 2𝛾𝑛) . (4.31)

(ii) There exists 𝑗 ∈ 𝐽𝑞 such that

𝑠∗𝑗 ≥
2𝑠 𝑗
3
√
𝑛
· (‖Rsll

𝐽𝑞
‖ − 2𝛾𝑛) . (4.32)
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Proof of Lemma 4.4.2. We prove part (i); part (ii) follows analogously when using
Lemma 4.3.9. Let 𝑧 be a vector fulfilling the statement of Lemma 4.5.2 for 𝑢 = 𝑥∗,
𝑣 = 𝑥 + Δ𝑥ll, and 𝐼 = 𝐽>𝑞 . Then 𝑧 ∈ 𝑊 + 𝑑, 𝑧𝐽>𝑞 = 𝑥𝐽>𝑞 + Δ𝑥ll

𝐽>𝑞
and by ℓ𝛿 (J ) ≤ 𝛾


𝛿𝐽≤𝑞 (𝑥∗𝐽≤𝑞 − 𝑧𝐽≤𝑞 )


 ≤ 𝛾 


𝛿𝐽>𝑞

(
𝑥∗𝐽>𝑞
− (𝑥𝐽>𝑞 + Δ𝑥ll

𝐽>𝑞
)
)


 .

Restricting to the components in 𝐽𝑞, and dividing by √𝜇, we get




𝛿𝐽𝑞 (𝑥∗𝐽𝑞 − 𝑧𝐽𝑞 )√
𝜇






 ≤ 𝛾





𝛿𝐽>𝑞

(
𝑥∗𝐽>𝑞
− (𝑥𝐽>𝑞 + Δ𝑥ll

𝐽>𝑞
)
)

√
𝜇






 ≤ 𝛾





𝛿𝐽>𝑞𝑥

∗
𝐽>𝑞√
𝜇






+𝛾‖Rxll
𝐽>𝑞
‖ .

(4.45)
Since 𝑤 ∈ N (𝛽), from Proposition 4.3.1 and (4.17) we see that for 𝑖 ∈ [𝑛]

𝛿𝑖√
𝜇
≤ 1√

1 − 2𝛽
· 𝛿𝑖 (𝑤(𝜇))√

𝜇
=

1√
1 − 2𝛽

· 1
𝑥𝑖 (𝜇)

,

and therefore




𝛿𝐽>𝑞𝑥
∗
𝐽>𝑞√
𝜇






 ≤ 1√
1 − 2𝛽




𝑥(𝜇)−1
𝐽>𝑞
𝑥∗𝐽>𝑞




 ≤ 1√
1 − 2𝛽

·



𝑥(𝜇)−1

𝐽>𝑞
𝑥∗𝐽>𝑞





1
≤ 𝑛√

1 − 2𝛽
,

where the last inequality follows by Lemma 4.3.3.
Using the above bounds with (4.45), along with ‖Rxll

𝐽≥𝑞
‖ ≤ ‖Rxll‖ ≤

√
2𝑛 from

Lemma 4.3.10(iii), we get



𝛿𝐽𝑞 𝑧𝐽𝑞√
𝜇





 ≤ 




𝛿𝐽𝑞𝑥∗𝐽𝑞√
𝜇






 + 𝛾𝑛√
1 − 2𝛽

+ 𝛾
√

2𝑛 ≤





𝛿𝐽𝑞𝑥∗𝐽𝑞√

𝜇






 + 2𝛾𝑛 ,

using that 𝛽 ≤ 1/8 and 𝑛 ≥ 3. Note that 𝑧 is a feasible solution to the least-squared
problem which is optimally solved by 𝑥ll

𝐽𝑞
for layer 𝐽𝑞 and so

‖𝑅𝑥ll
𝐽𝑞
‖ ≤





𝛿𝐽𝑞 𝑧𝐽𝑞√
𝜇





 .
It follows that 




𝛿𝐽𝑞𝑥∗𝐽𝑞√

𝜇






 ≥ ‖𝑅𝑥ll
𝐽𝑞
‖ − 2𝛾𝑛 .

Let us pick 𝑖 = arg max𝑡 ∈𝐽𝑞 |𝛿𝑡𝑥
∗
𝑡 |. Using Proposition 4.3.2,

𝑥∗𝑖
𝑥𝑖
≥ 1

1 + 𝛽 ·
𝛿𝑖𝑥
∗
𝑖√
𝜇
≥
‖𝑅𝑥ll

𝐽𝑞
‖ − 2𝛾𝑛

(1 + 𝛽)√𝑛
≥ 2

3
√
𝑛
· (‖Rxll

𝐽𝑞
‖ − 2𝛾𝑛) ,

completing the proof. □
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Lemma 4.4.3 (Repetition). Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ N (2𝛽) for 𝛽 ∈ (0, 1/8], let 𝜇 = 𝜇(𝑤)
and 𝛿 = 𝛿(𝑤). Let 𝑖, 𝑗 ∈ [𝑛] and 2 ≤ 𝜏 ≤ 𝑛 such that for the optimal solution
𝑤∗ = (𝑥∗, 𝑦∗, 𝑠∗), we have 𝑥∗𝑖 ≥ 𝛽𝑥𝑖/(210𝑛5.5) and 𝑠∗𝑗 ≥ 𝛽𝑠 𝑗/(210𝑛5.5), and assume
𝜚𝜇 (𝑖, 𝑗) ≥ −𝜏. After 𝑂 (𝛽−1√𝑛𝜏 log( �̄�∗ + 𝑛)) further iterations the duality gap 𝜇′
fulfills Ψ𝜇

′ (𝑖, 𝑗) ≥ 2𝜏, and for every ℓ ∈ [𝑛] \ {𝑖, 𝑗}, either Ψ𝜇
′ (𝑖, ℓ) ≥ 2𝜏, or

Ψ𝜇
′ (ℓ, 𝑗) ≥ 2𝜏.

Proof of Lemma 4.4.3. Let us select a value 𝜇′ such that

log 𝜇 − log 𝜇′ ≥ 5𝜏 log
(
4𝑛𝜅∗

𝛾

)
+ 31 log 𝑛 + 44 − 4 log 𝛽 .

The normalized duality gap decreases to such value within 𝑂 (𝛽−1√𝑛𝜏 · log( �̄�∗ + 𝑛))
iterations, recalling that log( �̄�∗ + 𝑛) = Θ(log(𝜅∗ + 𝑛)). The step-lengths for the affine
scaling and LLS steps are stated in Proposition 4.3.4 and Lemma 4.3.10(iv).Whenever
the algorithm chooses an LLS step, 𝜀a(𝑤) < 10𝑛3/2𝛾. Thus, the progress in 𝜇 will
be at least as much (in fact, much better) than the (1 − 𝛽/√𝑛) guarantee we use for
the affine scaling step in Proposition 4.3.4.

Let 𝑤′ = (𝑥 ′, 𝑦′, 𝑠′) be the central path element corresponding to 𝜇′, and let
𝛿′ = 𝛿(𝑤′). From now on we use the shorthand notation

Θ := log
(
4𝑛𝜅∗

𝛾

)
.

We first show that

Θ𝜚𝜇
′ (𝑖, 𝑗) ≥ 4Θ𝜏 + 18 log 𝑛 + 22 log 2 − 2 log 𝛽 (4.46)

for 𝜇′, and therefore, ΘΨ𝜇′ (𝑖, 𝑗) ≥ min(2Θ𝑛, 4Θ𝜏 + 18 log 𝑛 + 22 log 2 − 2 log 𝛽) ≥
2Θ𝜏 as 𝜏 ≤ 𝑛. Recalling the definition 𝜅 𝛿𝑖 𝑗 = 𝜅𝑖 𝑗𝛿 𝑗/𝛿𝑖 , we see that according to
Proposition 4.3.2,

𝜅 𝛿𝑖 𝑗 ≤
𝜅𝑖 𝑗

(1 − 𝛽)2
·
𝑥𝑖𝑠 𝑗

𝜇
, and 𝜅 𝛿

′
𝑖 𝑗 = 𝜅𝑖 𝑗 ·

𝑥 ′𝑖 𝑠
′
𝑗

𝜇′
.

Thus,

Θ𝜚𝜇
′ (𝑖, 𝑗)

≥ Θ𝜚𝜇 (𝑖, 𝑗) + log 𝜇 − log 𝜇′ + 2 log(1 − 𝛽) + log 𝑥 ′𝑖 − log 𝑥𝑖 + log 𝑠′𝑗 − log 𝑠 𝑗
≥ Θ𝜚𝜇 (𝑖, 𝑗) + 5Θ𝜏 + 31 log 𝑛 + 44 − 4 log 𝛽 + 2 log(1 − 𝛽) + log(𝑥 ′𝑖/𝑥𝑖) + log(𝑠′𝑗/𝑠 𝑗).
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Using the near-monotonicity of the central path (Lemma 4.3.3), we have 𝑥 ′𝑖 ≥
𝑥∗𝑖 /𝑛 and 𝑠′𝑗 ≥ 𝑠∗𝑗/𝑛. Together with our assumptions 𝑥∗𝑖 ≥ 𝛽𝑥𝑖/(210𝑛5.5) and 𝑠∗𝑖 ≥
𝛽𝑠𝑖/(210𝑛5.5), we see that

log(𝑥 ′𝑖/𝑥𝑖) + log(𝑠′𝑗/𝑠 𝑗) ≥ −13 log 𝑛 − 20 log 2 + 2 log 𝛽 .

Using the assumption 𝜚𝜇 (𝑖, 𝑗) > −𝜏 of the lemma, we can establish (4.46) as 𝛽 < 1/8.

Next, consider any ℓ ∈ [𝑛] \ {𝑖, 𝑗}. From the triangle inequality Lemma 4.2.16(ii)
it follows that 𝜅 𝛿′𝑖 𝑗 ≤ 𝜅 𝛿

′
𝑖ℓ · 𝜅

𝛿′
ℓ 𝑗 , which gives 𝜚𝜇′ (𝑖, ℓ) + 𝜚𝜇′ (ℓ, 𝑗) ≥ 𝜚𝜇

′ (𝑖, 𝑗). We
therefore get

max{Θ𝜚𝜇′ (𝑖, ℓ),Θ𝜚𝜇′ (ℓ, 𝑗)} ≥ 1
2
Θ𝜚𝜇

′ (𝑖, 𝑗)
(4.46)
≥ 2Θ𝜏 + 9 log 𝑛 + 11 log 2 − log 𝛽.

We next show that ifΘ𝜚𝜇′ (𝑖, ℓ) ≥ 2Θ𝜏+9 log 𝑛+11 log 2− log 𝛽, thenΨ𝜇′ (𝑖, ℓ) ≥
2𝜏. The case Θ𝜚𝜇′ (ℓ, 𝑗) ≥ 2Θ𝜏 + 9 log 𝑛 + 11 log 2 − log 𝛽 follows analogously.

Consider any 0 < �̄� < 𝜇′ with the corresponding central path point �̄� = (𝑥, �̄�, 𝑠).
The proof is complete by showing Θ𝜚 �̄� (𝑖, ℓ) ≥ Θ𝜚𝜇

′ (𝑖, ℓ) − 9 log 𝑛 − 11 log 2 + log 𝛽.
Recall that for central path elements, we have 𝜅 𝛿′𝑖 𝑗 = 𝜅𝑖 𝑗𝑥

′
𝑖/𝑥 ′𝑗 , and 𝜅 𝛿𝑖 𝑗 = 𝜅𝑖 𝑗𝑥𝑖/𝑥 𝑗 .

Therefore

Θ𝜚 �̄� (𝑖, 𝑗) = Θ𝜚𝜇
′ (𝑖, 𝑗) + log 𝑥𝑖 − log 𝑥 ′𝑖 − log 𝑥 𝑗 + log 𝑥 ′𝑗 .

Using Proposition 4.3.1, Lemma 4.3.3 and the assumption 𝑥∗𝑖 ≥ 𝛽𝑥𝑖/(210𝑛5.5), we
have 𝑥 𝑗 ≤ 𝑛𝑥 ′𝑗 and

𝑥𝑖 ≥
𝑥∗𝑖
𝑛
≥ 𝛽𝑥𝑖

210𝑛6.5 ≥
𝛽(1 − 𝛽)𝑥 ′𝑖

210𝑛7.5 ≥
𝛽𝑥 ′𝑖

211𝑛7.5 .

Using these bounds, we get

Θ𝜚 �̄� (𝑖, 𝑗) ≥ Θ𝜚𝜇
′ (𝑖, 𝑗) − 9 log 𝑛 − 11 log 2 + log 𝛽,

completing the proof. □

It remains to prove Lemma 4.4.4 and Lemma 4.4.5, addressing the more difficult
case 𝜉 ll

J < 4𝛾𝑛. It is useful to decompose the variables into two sets. We let

𝑩 := {𝑡 ∈ [𝑛] : |Rsll
𝑡 | < 4𝛾𝑛}, and 𝑵 := {𝑡 ∈ [𝑛] : |Rxll

𝑡 | < 4𝛾𝑛} . (4.47)

The assumption 𝜉 ll
J < 4𝛾𝑛 implies that for every layer 𝐽𝑘 , either 𝐽𝑘 ⊆ 𝑩 or 𝐽𝑘 ⊆ 𝑵.

The next two lemmas describe the relations between 𝛿 and 𝛿+.



4.6. Proofs of the main lemmas for the potential analysis 177

Lemma 4.6.1. Let 𝑤 ∈ N (𝛽) for 𝛽 ∈ (0, 1/8], and assume ℓ𝛿 (J ) ≤ 𝛾 and 𝜀ll(𝑤) <
4𝛾𝑛. For the next iterate 𝑤+ = (𝑥+, 𝑦+, 𝑠+) ∈ N (2𝛽), we have

(i) For 𝑖 ∈ 𝑩,

1
2
·
√
𝜇+

𝜇
≤
𝛿+𝑖
𝛿𝑖
≤ 2 ·

√
𝜇+

𝜇
and 𝛿−1

𝑖 𝑠
+
𝑖 ≤

3𝜇+
√
𝜇
.

(ii) For 𝑖 ∈ 𝑵,
1
2
·
√
𝜇

𝜇+
≤
𝛿+𝑖
𝛿𝑖
≤ 2 ·

√
𝜇

𝜇+
and 𝛿𝑖𝑥

+
𝑖 ≤

3𝜇+
√
𝜇
.

(iii) If 𝑖, 𝑗 ∈ 𝑩 or 𝑖, 𝑗 ∈ 𝑵, then

1
4
≤
𝜅 𝛿𝑖 𝑗

𝜅 𝛿
+
𝑖 𝑗

=
𝛿+𝑖 𝛿 𝑗

𝛿𝑖𝛿
+
𝑗

≤ 4 .

(iv) If 𝑖 ∈ 𝑵 and 𝑗 ∈ 𝑩, then
𝜅 𝛿𝑖 𝑗

𝜅 𝛿
+
𝑖 𝑗

≥ 4𝑛3.5 .

Proof. Part (i). By Lemma 4.3.10(i), we see that

‖𝛿𝐵Δ𝑥ll
𝐵‖∞ ≤ ‖𝛿𝐵Δ𝑥ll

𝐵 + 𝛿−1
𝐵 Δ𝑠ll𝐵 + 𝑥

1/2
𝐵 𝑠1/2𝐵 ‖∞ + ‖𝛿

−1
𝐵 (Δ𝑠ll𝐵 + 𝑠𝐵)‖∞

= ‖𝛿𝐵Δ𝑥ll
𝐵 + 𝛿−1

𝐵 Δ𝑠ll𝐵 + 𝑥
1/2
𝐵 𝑠1/2𝐵 ‖∞ +

√
𝜇‖Rsll

𝐵‖∞
≤ √𝜇

(
6𝑛ℓ𝛿 (J ) + 4𝑛𝛾

)
≤ 10𝑛𝛾

√
𝜇 ≤ √𝜇/64 ,

by the assumption on ℓ𝛿 (J ) and the definition of 𝑩.
By construction of the LLS step, |𝑥+𝑖 − 𝑥𝑖 | = 𝛼+ |Δ𝑥ll | ≤ |Δ𝑥ll |, recalling that

0 ≤ 𝛼+ ≤ 1. Using the bound derived above, for 𝑖 ∈ 𝑩 we get����𝑥+𝑖𝑥𝑖 − 1
���� ≤ �����Δ𝑥ll

𝑖

𝑥𝑖

����� = |𝛿𝑖Δ𝑥ll
𝑖 |

𝛿𝑖𝑥𝑖
≤
√
𝜇

64𝛿𝑖𝑥𝑖
≤ 1

32
,

where the last inequality follows from Proposition 4.3.2. As

𝛿+𝑖
𝛿𝑖

=

√
𝑥+𝑖 𝑠
+
𝑖

𝑥𝑖𝑠𝑖
· 𝑥𝑖
𝑥+𝑖

and
1 − 2𝛽
1 + 𝛽

√
𝜇+
√
𝜇
≤

√
𝑥+𝑖 𝑠
+
𝑖

𝑥𝑖𝑠𝑖
≤ 1 + 2𝛽

1 − 𝛽

√
𝜇+
√
𝜇

by Proposition 4.3.2 the claimed bounds follow with 𝛽 ≤ 1/8.
To get the upper bound on 𝛿−1

𝑖 𝑠
+
𝑖 , again with Proposition 4.3.2

𝛿−1
𝑖 𝑠
+
𝑖 =

𝛿+𝑖
𝛿𝑖𝛿
+
𝑖

𝑠+𝑖 =
𝛿+𝑖
𝛿𝑖
·
√
𝑥+𝑖 𝑠
+
𝑖 ≤ 2

√
𝜇+

𝜇
· (1 + 2𝛽)

√
𝜇+ ≤ 3𝜇+

√
𝜇
.
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Part (ii). Analogously to (i).

Part (iii). Immediate from parts (i) and (ii).

Part (iv). Follows by parts (i) and (ii), and by the lower bound on
√
𝜇/𝜇+ obtained

from Lemma 4.3.10(iv) as follows

𝜅 𝛿𝑖 𝑗

𝜅 𝛿
+
𝑖 𝑗

=
𝛿+𝑖 𝛿 𝑗

𝛿𝑖𝛿
+
𝑗

≥ 𝜇

4𝜇+
=

1
4(1 − 𝛼+) ≥

𝛽

12
√
𝑛𝜀ll(𝑤)

≥ 4𝑛3.5. □

Lemma 4.4.4 (Repetition). Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ N (𝛽) for 𝛽 ∈ (0, 1/8], and let
J = (𝐽1, . . . , 𝐽𝑝) be a 𝛿(𝑤)-balanced partition. Assume that 𝜉 ll

J (𝑤) < 4𝛾𝑛, and
let 𝑤+ = (𝑥+, 𝑦+, 𝑠+) ∈ N (2𝛽) be the next iterate obtained by the LLS step with
𝜇+ = 𝜇(𝑤+) and assume 𝜇+ > 0. Let 𝑞 ∈ [𝑝] such that 𝜉 ll

J (𝑤) = 𝜉 ll
𝐽𝑞
(𝑤). If

ℓ𝛿
+ (J ) ≤ 4𝛾𝑛, then there exist 𝑖, 𝑗 ∈ 𝐽𝑞 such that 𝑥∗𝑖 ≥ 𝛽𝑥+𝑖 /(16𝑛3/2) and 𝑠∗𝑗 ≥

𝛽𝑠+𝑗/(16𝑛3/2). Further, for any ℓ, ℓ′ ∈ 𝐽𝑞, we have 𝜚𝜇
+ (ℓ, ℓ′) ≥ −|𝐽𝑞 |.

Proof of Lemma 4.4.4. Without loss of generality, let 𝜉 ll
J = 𝜉 ll

𝐽𝑞
= ‖Rxll

𝐽𝑞
‖ for a layer

𝑞 with 𝐽𝑞 ⊆ 𝑵. The case 𝜉 ll
𝐽𝑞

= ‖Rsll
𝐽𝑞
‖ and 𝐽𝑞 ⊆ 𝑩 can be treated analogously.

By Lemma 4.3.10(iii), ‖Rsll
𝐽𝑞
‖ ≥ 1

2−
3
4 𝛽 >

1
4+2𝑛𝛾, and therefore Lemma 4.4.2 pro-

vides a 𝑗 ∈ 𝐽𝑞 such that 𝑠∗𝑗/𝑠 𝑗 ≥ 1/(6√𝑛). Using Lemma 4.3.3 and Proposition 4.3.1
we find that 𝑠+𝑗/𝑠 𝑗 ≤ 2𝑛 and so 𝑠∗𝑗/𝑠+𝑗 = 𝑠∗𝑗/𝑠 𝑗 · 𝑠 𝑗/𝑠+𝑗 ≥ 1/(12𝑛3/2) > 1/(16𝑛3/2).

The final statement 𝜚𝜇+ (ℓ, ℓ′) ≥ −|𝐽𝑞 | for any ℓ, ℓ′ ∈ 𝐽𝑞 is also straightforward.
From Lemma 4.6.1(iii) and the strong connectivity of 𝐽𝑞 in𝐺 𝛿,𝛾/𝑛, we obtain that 𝐽𝑞 is
strongly connected in𝐺 𝛿+,𝛾/(4𝑛) . Hence, 𝜚𝜇+ (ℓ, ℓ′) ≥ −|𝐽𝑞 | follows by Lemma 4.4.1.

The rest of the proof is dedicated to showing the existence of an 𝑖 ∈ 𝐽𝑞 such that
𝑥∗𝑖 ≥ 𝛽𝑥+𝑖 /(16𝑛3/2). For this purpose, we will prove following claim.

Claim 4.6.2. ‖𝛿𝐽𝑞𝑥∗𝐽𝑞 ‖ ≥
𝛽𝜇+

8√𝑛𝜇 .

In order to prove Claim 4.6.2, we define

𝑧 := (𝛿+)−1𝐿 𝛿
+
𝐽>𝑞

(
𝛿+𝐽>𝑞
(𝑥∗𝐽>𝑞

− 𝑥+𝐽>𝑞
)
)

and 𝑤 := 𝑥∗ − 𝑥+ − 𝑧 ,

as in Lemma 4.5.2. By construction, 𝑤 ∈ 𝑊 and 𝑤𝐽>𝑞 = ®0. Thus, 𝑤𝐽𝑞 ∈ 𝑊J ,𝑞 as
defined in Section 4.3.4.

Using the triangle inequality, we get

‖𝛿𝐽𝑞𝑥∗𝐽𝑞 ‖ ≥ ‖𝛿𝐽𝑞 (𝑥
+
𝐽𝑞
+ 𝑤𝐽𝑞 )‖ − ‖𝛿𝐽𝑞 𝑧𝐽𝑞 ‖ . (4.48)
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We bound the two terms separately, starting with an upper bound on ‖𝛿𝐽𝑞 𝑧𝐽𝑞 ‖. Since
ℓ𝛿
+ (J ) ≤ 4𝛾𝑛, we have with Lemma 4.5.2 that


𝛿+𝐽𝑞 𝑧𝐽𝑞


 ≤ ℓ𝛿+ (J ) 


𝛿+𝐽>𝑞

(
𝑥∗𝐽>𝑞
− 𝑥+𝐽>𝑞

)



≤ 4𝑛𝛾




𝛿+𝐽>𝑞

(
𝑥∗𝐽>𝑞
− 𝑥+𝐽>𝑞

)



= 4𝑛𝛾






𝛿+𝐽>𝑞
𝑥+𝐽>𝑞

(
𝑥∗𝐽>𝑞

𝑥+𝐽>𝑞

− ®1
)






≤ 4𝑛𝛾
(
‖𝛿+𝑥+‖∞ ·





 𝑥∗𝑥+ 



1
+

√
𝑛𝜇+

)
≤ 4𝑛𝛾

(
3
2
√
𝜇+ · 4

3
𝑛 +

√
𝑛𝜇+

)
≤ 16𝑛2√𝜇+𝛾,

(4.49)

where the penultimate inequality follows by Proposition 4.3.1, Proposition 4.3.2 and
Lemma 4.3.3. We can use this and Lemma 4.6.1(ii) to obtain

‖𝛿𝐽𝑞 𝑧𝐽𝑞 ‖ ≤ ‖𝛿𝐽𝑞/𝛿+𝐽𝑞 ‖∞ · ‖𝛿
+
𝐽𝑞
𝑧𝐽𝑞 ‖ ≤

32𝑛2𝛾𝜇+
√
𝜇

≤ 𝛽𝜇+

32𝑛3√𝜇
, (4.50)

using the definition of 𝛾.
The first RHS term in (4.48) will be bounded as follows.

Claim 4.6.3. ‖𝛿𝐽𝑞 (𝑥+𝐽𝑞 + 𝑤𝐽𝑞 )‖ ≥
1
2
√
𝜇𝜉 ll

J .

Proof. [Claim 4.6.3] We recall the characterization (4.26) of the LLS step Δ𝑥ll ∈
𝑊 . Namely, there exists Δ𝑠 ∈ 𝑊⊥J ,1 ⊕ · · · ⊕ 𝑊

⊥
J ,𝑞 that is the unique solution to

𝛿−1Δ𝑠 + 𝛿Δ𝑥ll = −𝛿𝑥. From the above, note that

‖𝛿−1
𝐽𝑞
Δ𝑠𝐽𝑞 ‖ = ‖𝛿𝐽𝑞 (𝑥𝐽𝑞 + Δ𝑥ll

𝐽𝑞
)‖ = √𝜇‖Rxll

𝐽𝑞
‖ = √𝜇𝜉 ll

J .

From the Cauchy-Schwarz inequality,

‖𝛿−1
𝐽𝑞
Δ𝑠𝐽𝑞 ‖ · ‖𝛿𝐽𝑞 (𝑥+𝐽𝑞 + 𝑤𝐽𝑞 )‖ ≥

���〈𝛿−1
𝐽𝑞
Δ𝑠𝐽𝑞 , 𝛿𝐽𝑞 (𝑥+𝐽𝑞 + 𝑤𝐽𝑞 )

〉���
=

���〈𝛿−1
𝐽𝑞
Δ𝑠𝐽𝑞 , 𝛿𝐽𝑞𝑥

+
𝐽𝑞

〉��� . (4.51)

Here, we used that Δ𝑠𝐽𝑞 ∈ 𝑊⊥J ,𝑞 and 𝑤𝐽𝑞 ∈ 𝑊J ,𝑞 . Note that

𝑥+ = 𝑥 + 𝛼Δ𝑥ll = 𝑥 + Δ𝑥ll − (1 − 𝛼)Δ𝑥ll = −𝛿−2Δ𝑠 − (1 − 𝛼)Δ𝑥ll .
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Therefore,���〈𝛿−1
𝐽𝑞
Δ𝑠𝐽𝑞 , 𝛿𝐽𝑞𝑥

+
𝐽𝑞

〉��� = ���〈𝛿−1
𝐽𝑞
Δ𝑠𝐽𝑞 ,−𝛿−1

𝐽𝑞
Δ𝑠𝐽𝑞 − (1 − 𝛼)𝛿𝐽𝑞Δ𝑥ll

𝐽𝑞

〉���
≥ ‖𝛿−1

𝐽𝑞
Δ𝑠𝐽𝑞 ‖2 − (1 − 𝛼)

���〈𝛿−1
𝐽𝑞
Δ𝑠𝐽𝑞 , 𝛿𝐽𝑞Δ𝑥

ll
𝐽𝑞

〉��� .
By Lemma 4.5.3, there existsΔ𝑥 ∈ 𝑊J ,1⊕· · ·⊕𝑊J , 𝑝 such that ‖𝛿𝐽𝑞 (Δ𝑥ll

𝐽𝑞
−Δ𝑥𝐽𝑞 )‖ ≤

2𝑛ℓ𝛿 (J )√𝜇. Therefore, using the orthogonality of Δ𝑠𝐽𝑞 and Δ𝑥𝐽𝑞 , we get that���〈𝛿−1
𝐽𝑞
Δ𝑠𝐽𝑞 , 𝛿𝐽𝑞Δ𝑥

ll
𝐽𝑞

〉��� = ���〈𝛿−1
𝐽𝑞
Δ𝑠𝐽𝑞 , 𝛿𝐽𝑞 (Δ𝑥ll

𝐽𝑞
− Δ𝑥ll

𝐽𝑞
)
〉��� ≤ 2𝑛ℓ𝛿 (J )√𝜇 · ‖𝛿−1

𝐽𝑞
Δ𝑠𝐽𝑞 ‖ .

From the above inequalities, we see that

‖𝛿𝐽𝑞 (𝑥+𝐽𝑞 +𝑤𝐽𝑞 )‖ ≥ ‖𝛿
−1
𝐽𝑞
Δ𝑠𝐽𝑞 ‖−2(1−𝛼)𝑛ℓ𝛿 (J )√𝜇 =

√
𝜇𝜉 ll

J −2(1−𝛼)𝑛ℓ𝛿 (J )√𝜇 .

It remains to show (1 − 𝛼)𝑛ℓ𝛿 (J ) ≤ 𝜉 ll
J /4. From Lemma 4.3.10(iv), we obtain

(1 − 𝛼)𝑛ℓ𝛿 (J ) ≤ 3𝑛3/2ℓ𝛿 (J )𝜉 ll
J 𝛽
−1,

using 𝜉 ll
J ≥ 𝜀

ll. The claim now follows by the assumption ℓ𝛿 (J ) ≤ 𝛾, and the choice
of 𝛾. ⌟

Proof. [Claim 4.6.2] Using Lemma 4.3.10(iv),

𝜇+ ≤
3
√
𝑛𝜉 ll

J 𝜇

𝛽
,

implying ‖𝛿𝐽𝑞 (𝑥+𝐽𝑞 + 𝑤𝐽𝑞 )‖ ≥ 𝛽𝜇
+/(6√𝑛𝜇) by Claim 4.6.3. Now the claim follows

using (4.48) and (4.50). ⌟

By Lemma 4.6.1(ii), we see that

‖𝛿𝐽𝑞𝑥+𝐽𝑞 ‖ ≤
√
𝑛‖𝛿𝐽𝑞𝑥+𝐽𝑞 ‖∞ ≤

3
√
𝑛𝜇+
√
𝜇

.

Thus, the lemma follows immediately from Claim 4.6.2: for at least one 𝑖 ∈ 𝐽𝑞, we
must have

𝑥∗𝑖
𝑥𝑖
≥
‖𝛿𝐽𝑞𝑥∗𝐽𝑞 ‖
‖𝛿𝐽𝑞𝑥+𝐽𝑞 ‖

≥ 𝛽

24𝑛
≥ 𝛽

16𝑛3/2 . □
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Lemma 4.4.5 (Repetition). Let 𝑤 = (𝑥, 𝑦, 𝑠) ∈ N (𝛽) for 𝛽 ∈ (0, 1/8], and let
J = (𝐽1, . . . , 𝐽𝑝) be a 𝛿(𝑤)-balanced partition. Assume that 𝜉 ll

J (𝑤) < 4𝛾𝑛, and
let 𝑤+ = (𝑥+, 𝑦+, 𝑠+) ∈ N (2𝛽) be the next iterate obtained by the LLS step with
𝜇+ = 𝜇(𝑤+) and assume 𝜇+ > 0. If ℓ𝛿+ (J ) > 4𝛾𝑛, then there exist two layers 𝐽𝑞 and
𝐽𝑟 and 𝑖 ∈ 𝐽𝑞 and 𝑗 ∈ 𝐽𝑟 such that 𝑥∗𝑖 ≥ 𝑥+𝑖 /(8𝑛3/2), and 𝑠∗𝑗 ≥ 𝑠+𝑗/(8𝑛3/2). Further,
𝜚𝜇
+ (𝑖, 𝑗) ≥ −|𝐽𝑞∪𝐽𝑟 |, and for all ℓ, ℓ′ ∈ 𝐽𝑞∪𝐽𝑟 , ℓ ≠ ℓ′ we haveΨ𝜇 (ℓ, ℓ′) ≤ |𝐽𝑞∪𝐽𝑟 |.

Proof of Lemma 4.4.5. Recall the sets 𝑩 and 𝑵 defined in (4.47). The key is to show
the existence of an edge

(𝑖′, 𝑗 ′) ∈ 𝐸𝛿+,𝛾/(4𝑛) such that 𝑖′ ∈ 𝐽𝑞 ⊆ 𝑩, 𝑗 ′ ∈ 𝐽𝑟 ⊆ 𝑵, 𝑟 < 𝑞 . (4.52)

Before proving the existence of such 𝑖′ and 𝑗 ′, we show how the rest of the statements
follow. The existence of 𝑖 ∈ 𝐽𝑞 and 𝑗 ∈ 𝐽𝑟 such that 𝑥∗𝑖 ≥ 𝑥+𝑖 /(8𝑛3/2) and 𝑠∗𝑗 ≥
𝑠+𝑗/(8𝑛3/2) follow immediately from Lemma 4.4.2. The other statements are that
𝜚𝜇
+ (𝑖, 𝑗) ≥ −|𝐽𝑞 ∪ 𝐽𝑟 |, and for each ℓ, ℓ′ ∈ 𝐽𝑞 ∪ 𝐽𝑟 , ℓ ≠ ℓ′, Ψ𝜇 (ℓ, ℓ′) ≤ |𝐽𝑞 ∪

𝐽𝑟 |. According to Lemma 4.4.1, the latter is true (even with the stronger bound
max{|𝐽𝑞 |, |𝐽𝑟 |}) whenever ℓ, ℓ′ ∈ 𝐽𝑞, or ℓ, ℓ′ ∈ 𝐽𝑟 , or if ℓ ∈ 𝐽𝑞 and ℓ′ ∈ 𝐽𝑟 . It is left to
show the lower bound on 𝜚𝜇+ (𝑖, 𝑗) and Ψ𝜇 (ℓ, ℓ′) ≤ |𝐽𝑞 ∪ 𝐽𝑟 | for ℓ′ ∈ 𝐽𝑞 and ℓ ∈ 𝐽𝑟 .

From Lemma 4.6.1(iii), we have that if ℓ, ℓ′ ∈ 𝐽𝑞 ⊆ 𝑩 or ℓ, ℓ′ ∈ 𝐽𝑟 ⊆ 𝑵,
then 𝜅 𝛿ℓℓ′/4 ≤ 𝜅 𝛿

+
ℓℓ′. Hence, the strong connectivity of 𝐽𝑟 and 𝐽𝑞 in 𝐺 𝛿,𝛾 implies

the strong connectivity of these sets in 𝐺 𝛿+,𝛾/(4𝑛) . Together with the edge (𝑖′, 𝑗 ′),
we see that every ℓ′ ∈ 𝐽𝑞 can reach every ℓ ∈ 𝐽𝑟 on a directed path of length
≤ |𝐽𝑞 ∪ 𝐽𝑟 | − 1 in 𝐺 𝛿+,𝛾/(4𝑛) . Applying Lemma 4.4.1 for this setting, we obtain
Ψ𝜇 (ℓ, ℓ′) ≤ 𝜚𝜇+ (ℓ, ℓ′) ≤ |𝐽𝑞 ∪ 𝐽𝑟 | for all such pairs, and also 𝜚𝜇+ (𝑖, 𝑗) ≥ −|𝐽𝑞 ∪ 𝐽𝑟 |.

The rest of the proof is dedicated to showing the existence of 𝑖′ and 𝑗 ′ as in (4.52).
We let 𝑘 ∈ [𝑝] such that ℓ𝛿+ (𝐽≥𝑘) = ℓ𝛿

+ (J ) > 4𝑛𝛾. To simplify the notation, we let
𝐼 = 𝐽≥𝑘 .

When the subroutine Layering(𝛿, 𝜅) was constructing J , the subroutine Verify-
Lift(Diag(𝛿)𝑊, 𝐼, 𝛾) was called for the set 𝐼 = 𝐽≥𝑘 , with the answer ‘pass’. Besides
ℓ𝛿 (𝐼) ≤ 𝛾, this guaranteed the stronger property that max 𝑗𝑖 |𝐵 𝑗𝑖 | ≤ 𝛾 for the matrix
𝐵 implementing the lift (see Remark 4.2.18).

Let us recall how this matrix 𝐵 was obtained. The subroutine starts by finding
a minimal 𝐼 ′ ⊆ 𝐼 such that dim(𝜋𝐼 ′ (𝑊)) = dim(𝜋𝐼 (𝑊)). Recall that 𝜋𝐼 ′ (𝑊) � R𝐼 ′

and 𝐿 𝛿𝐼 (𝑝) = 𝐿 𝛿𝐼 ′ (𝑝𝐼 ′) for every 𝑝 ∈ 𝜋𝐼 (Diag(𝛿)𝑊).
Consider the optimal lifting 𝐿 𝛿𝐼 : 𝜋𝐼 (Diag(𝛿)𝑊) → Diag(𝛿)𝑊 . We defined

𝐵 ∈ R( [𝑛]\𝐼 )×𝐼 ′ as the matrix sending any 𝑞 ∈ 𝜋𝐼 ′ (Diag(𝛿)𝑊) to the corresponding
vector [𝐿 𝛿𝐼 ′ (𝑞)] [𝑛]\𝐼 . The column 𝐵𝑖 can be computed as [𝐿 𝛿𝐼 ′ (𝑒𝑖)] [𝑛]\𝐼 for 𝑒𝑖 ∈ R𝐼 ′.

We consider the transformation

�̄� := Diag(𝛿+𝛿−1)𝐵Diag
(
(𝛿+𝐼 ′)−1𝛿𝐼 ′

)
.
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This maps 𝜋𝐼 ′ (Diag(𝛿+)𝑊) → 𝜋 [𝑛]\𝐼 (Diag(𝛿+)𝑊).
Let 𝑧 ∈ 𝜋𝐼 (Diag(𝛿+)𝑊) be the singular vector corresponding to the maximum

singular value of 𝐿 𝛿+𝐼 , namely, ‖[𝐿 𝛿+𝐼 (𝑧)] [𝑛]\𝐼 ‖ > 4𝑛𝛾‖𝑧‖. Let us normalize 𝑧 such
that ‖𝑧𝐼 ′ ‖ = 1. Thus,

‖ [𝐿 𝛿+𝐼 ′ (𝑧𝐼 ′)] [𝑛]\𝐼 ‖ > 4𝑛𝛾 .

Let us now apply �̄� to 𝑧𝐼 ′ ∈ 𝜋𝐼 ′ (Diag(𝛿+)𝑊). Since 𝐿 𝛿+𝐼 is the minimum-norm lift
operator, we see that

‖�̄�𝑧𝐼 ′ ‖ ≥ ‖[𝐿 𝛿
+
𝐼 ′ (𝑧𝐼 ′)]𝑛\𝐼 ‖ > 4𝑛𝛾 .

We can upper bound the operator norm using the Frobenius norm ‖�̄�‖ ≤ ‖�̄�‖𝐹 =√∑
𝑗𝑖 �̄� 𝑗𝑖

2 ≤ 𝑛max 𝑗𝑖 |�̄� 𝑗𝑖 |, and therefore

max
𝑗𝑖
|�̄� 𝑗𝑖 | > 4𝛾 .

Let us fix 𝑖′ ∈ 𝐼 ′ and 𝑗 ′ ∈ [𝑛] \ 𝐼 as the indices giving the maximum value of �̄�. Note
that �̄� 𝑗′𝑖′ = 𝐵 𝑗′𝑖′𝛿+𝑗′𝛿𝑖′/(𝛿+𝑖′𝛿 𝑗′).

Let us now use Lemma 4.2.17 for the pair 𝑖′, 𝑗 ′, the matrix 𝐵 and the subspace
Diag(𝛿)𝑊 . Noting that 𝐵 𝑗′𝑖′ = [𝐿 𝛿𝐼 ′ (𝑒𝑖

′)] 𝑗′, we obtain 𝜅 𝛿𝑖′ 𝑗′ ≥ |𝐵 𝑗′𝑖′ |. Now,

𝜅 𝛿
+
𝑖′ 𝑗′ = 𝜅

𝛿
𝑖′ 𝑗′ ·

𝛿+𝑗′𝛿𝑖′

𝛿+𝑖′𝛿 𝑗′
≥ |𝐵 𝑗′𝑖′ | ·

𝛿+𝑗′𝛿𝑖′

𝛿+𝑖′𝛿 𝑗′
= |�̄� 𝑗′𝑖′ | > 4𝛾 . (4.53)

The next claim finishes the proof.

Claim 4.6.4. For 𝑖′ and 𝑗 ′ selected as above, (4.52) holds.

Proof. (𝑖′, 𝑗 ′) ∈ 𝐸𝛿+,𝛾/(4𝑛) holds by (4.53). From the above, we have

|𝐵 𝑗′𝑖′ | > 4𝛾 ·
𝛿+𝑖′𝛿 𝑗′

𝛿𝑖′𝛿
+
𝑗′
.

According to Remark 4.2.18, |𝐵 𝑗′𝑖′ | ≤ 𝛾 follows since Verify-Lift(Diag(𝛿)𝑊, 𝐼, 𝛾)
returned with ‘pass’. We thus have

𝛿+𝑖′𝛿 𝑗′

𝛿𝑖′𝛿
+
𝑗′
<

1
4
.

Lemma 4.6.1 excludes the scenarios 𝑖′, 𝑗 ′ ∈ 𝑁 , 𝑖′, 𝑗 ′ ∈ 𝐵, and 𝑖′ ∈ 𝑁 , 𝑗 ′ ∈ 𝐵, leaving
𝑖′ ∈ 𝐵 and 𝑗 ′ ∈ 𝑁 as the only possibility. Therefore, 𝑖′ ∈ 𝐽𝑞 ⊆ 𝐵 and 𝑗 ′ ∈ 𝐽𝑟 ⊆ 𝑁 .
We have 𝑟 < 𝑞 since 𝑖 ∈ 𝐼 = 𝐽≥𝑘 and 𝑗 ∈ [𝑛] \ 𝐼 = 𝐽<𝑘 . □
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4.7 Initialization

Our main algorithm (Algorithm 4 in Section 4.3.6), requires an initial solution 𝑤0 =
(𝑥0, 𝑦0, 𝑠0) ∈ N (𝛽). In this section, we remove this assumption by adapting the
initialization method of [198] to our setting.

We use the “big-𝑀 method”, a standard initialization approach for path-following
interior point methods that introduces an auxiliary system whose optimal solutions
map back to the optimal solutions of the original system. The primal-dual system we
consider is

min 𝑐T𝑥+𝑀®1T
¯
𝑥 max 𝑦T𝑏 + 2𝑀®1T𝑧

𝐴𝑥 − 𝐴
¯
𝑥 = 𝑏 𝐴T𝑦 + 𝑧 + 𝑠 = 𝑐

𝑥 + 𝑥 = 2𝑀𝑒 𝑧 + 𝑠 = ®0
𝑥, 𝑥,

¯
𝑥 ≥ ®0 −𝐴T𝑦 +

¯
𝑠 = 𝑀𝑒

𝑠, 𝑠,
¯
𝑠 ≥ ®0.

(Init-LP)

The constraint matrix used in this system is

�̂� =

(
𝐴 −𝐴 0
𝐼 0 𝐼

)
The next lemma asserts that the �̄� condition number of �̂� is not much bigger than that
of 𝐴 of the original system (4.1).

Lemma 4.7.1 ([198, Lemma 23]). �̄��̂� ≤ 3
√

2( �̄�𝐴 + 1).

We extend this bound for �̄�∗.

Lemma 4.7.2. �̄�∗
�̂�
≤ 3
√

2( �̄�∗𝐴 + 1).

Proof. Let 𝐷 ∈ D𝑛 and let �̂� ∈ D3𝑛 the matrix consisting of three copies of 𝐷, i.e.

�̂� =
©­«
𝐷 0 0
0 𝐷 0
0 0 𝐷

ª®¬ .
Then

�̂��̂� =

(
𝐴𝐷 −𝐴𝐷 0
𝐷 0 𝐷

)
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Row-scaling does not change �̄� as the kernel of the matrix remains unchanged. Thus,
we can rescale the last 𝑛 rows of �̂��̂�, to the identity matrix, i.e. multiplying by
(𝐼, 𝐷−1) from the left hand side. We observe that

�̄��̂��̂� = �̄�

((
𝐴𝐷 −𝐴𝐷 0
𝐼 0 𝐼

))
≤ 3
√

2( �̄�𝐴𝐷 + 1)

where the inequality follows from Lemma 4.7.1. The lemma now readily follows as

�̄�∗
�̂�
= inf{ �̄��̂��̂� : 𝐷 ∈ D3𝑛} ≤ inf{3

√
2( �̄�𝐴𝐷 + 1) : 𝐷 ∈ D𝑛} = 3

√
2( �̄�∗𝐴 + 1). □

We show next that the optimal solutions of the original system are preserved
for sufficiently large 𝑀 . We let 𝑑 be the min-norm solution to 𝐴𝑥 = 𝑏, i.e., 𝑑 =
𝐴T (𝐴𝐴T)−1𝑏.

Proposition 4.7.3. Assume both primal and dual of (4.1) are feasible, and 𝑀 >
max{( �̄�𝐴 + 1)‖𝑐‖, �̄�𝐴‖𝑑‖}. Every optimal solution (𝑥, 𝑦, 𝑠) to (4.1), can be extended
to an optimal solution (𝑥,

¯
𝑥, 𝑥, 𝑦, 𝑠,

¯
𝑠, 𝑠) to (Init-LP); and conversely, from every opti-

mal solution (𝑥,
¯
𝑥, 𝑥, 𝑦, 𝑧, 𝑠,

¯
𝑠, 𝑠) to (Init-LP), we obtain an optimal solution (𝑥, 𝑦, 𝑠)

by deleting the auxiliary variables.

Proof. If system (4.1) is feasible, it admits a basic optimal solution (𝑥∗, 𝑦∗, 𝑠∗) with
basis 𝐵 such that 𝐴𝐵𝑥∗𝐵 = 𝑏, 𝑥∗ ≥ ®0, 𝐴T

𝐵𝑦
∗ = 𝑐 and 𝐴T𝑦∗ ≤ 𝑐. Using Proposi-

tion 4.2.1(ii) we see that

‖𝑥∗𝐵‖ = ‖𝐴−1
𝐵 𝑏‖ = ‖𝐴−1

𝐵 𝐴𝑑‖ ≤ �̄�𝐴‖𝑑‖ < 𝑀 , (4.54)

and using that ‖𝐴‖ = ‖𝐴T‖ we observe

‖𝐴T𝑦∗‖ = ‖𝐴T𝐴−T
𝐵 𝑐‖ ≤ ‖𝐴T𝐴−T

𝐵 ‖‖𝑐‖ = ‖𝐴−1
𝐵 𝐴‖‖𝑐‖ ≤ �̄�𝐴‖𝑐‖ < 𝑀. (4.55)

We can extend this solution to a solution of system (Init-LP) via setting 𝑥∗ = 2𝑀𝑒 −
𝑥∗,

¯
𝑥∗ = ®0, 𝑧∗ = 𝑠∗ = ®0 and

¯
𝑠∗ = 𝑀𝑒 + 𝐴T𝑦∗. Observe that 𝑥∗ > ®0 and

¯
𝑠∗ > ®0 by (4.54)

and (4.55). Furthermore observe that by complementary slackness this extended
solution for (Init-LP) is an optimal solution. The property that

¯
𝑠∗ > ®0 immediately

tells us that
¯
𝑥 vanishes for all optimal solutions of (Init-LP) and thus all optimal

solutions of (4.1) coincide with the optimal solutions of (Init-LP), with the auxiliary
variables removed. □

The next lemma is from [146, Lemma 4.4]. Recall that 𝑤 = (𝑥, 𝑦, 𝑠) ∈ N (𝛽) if
‖𝑥𝑠/𝜇(𝑤) − ®1‖ ≤ 𝛽.

Lemma 4.7.4. Let𝑤 = (𝑥, 𝑦, 𝑠) ∈ P++×D++, and let 𝜈 > 0. Assume that ‖𝑥𝑠/𝜈−®1‖ ≤
𝜏. Then (1 − 𝜏/√𝑛)𝜈 ≤ 𝜇(𝑤) ≤ (1 + 𝜏/√𝑛)𝜈 and 𝑤 ∈ N (𝜏/(1 − 𝜏)).
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The new system has the advantage that we can easily initialize the system with a
feasible solution in close proximity to central path:

Proposition 4.7.5. We can initialize system (Init-LP) close to the central path with
initial solution 𝑤0 = (𝑥0, 𝑦0, 𝑠0) ∈ N (1/8) and parameter 𝜇(𝑤0) ≈ 𝑀2 if 𝑀 >
15 max{( �̄�𝐴 + 1)‖𝑐‖, �̄�𝐴‖𝑑‖}.

Proof. The initialization follows along the lines of [198, Section 10]. We let 𝑑 as
above, and set

𝑥0 = 𝑀𝑒, 𝑥0 = 𝑀𝑒,
¯
𝑥0 = 𝑀𝑒 − 𝑑

𝑦0 = ®0, 𝑧0 = −𝑀𝑒
𝑠0 = 𝑀𝑒, 𝑠0 = 𝑀𝑒 + 𝑐,

¯
𝑠0 = 𝑀𝑒.

This is a feasible primal-dual solution to system (Init-LP) with parameter

𝜇0 = (3𝑛)−1(𝑥0T
𝑠0 +

¯
𝑥0T

¯
𝑠0 + 𝑥0T

𝑠0) = (3𝑛)−1(3𝑛𝑀2 + 𝑀𝑐T®1 − 𝑀𝑑T®1) ≈ 𝑀2 .

We see that 





 1
𝑀2

©­«
𝑥0𝑠0

𝑥0𝑠0

¯
𝑥0

¯
𝑠0

ª®¬ − 𝑒








2

= 𝑀−2‖𝑐‖2 + 𝑀−2‖𝑑‖2 ≤ 1
92 �̄�2

𝐴

≤ 1
92 .

With Lemma 4.7.4 we conclude that 𝑤0 = (𝑥0, 𝑦0, 𝑠0) ∈ N
(

1/9
1−1/9

)
= N (1/8). □

Detecting infeasibility To use the extended system (Init-LP), we still need to assume
that both the primal and dual programs in (4.1) are feasible. For arbitrary instances,
we first need to check if this is the case, or conclude that the primal or the dual (or
both) are infeasible.

This can be done by employing a two-phase method. The first phase decides
feasibility by running (Init-LP) with data (𝐴, 𝑏, ®0) and 𝑀 > �̄�𝐴‖𝑑‖. The objective
value of the optimal primal-dual pair is 0 if and only if (4.1) has a feasible solution. If
the optimal primal/dual solution (𝑥∗,

¯
𝑥∗, 𝑥∗, 𝑦∗, 𝑠∗,

¯
𝑠∗, 𝑠∗) has positive objective value,

we can extract an infeasibility certificate in the following way.
By the characterization of �̄�𝐴 as in Proposition 4.2.1(ii), there exists an optimal

solution 𝑥 ′ with 𝑥 ′ > ®0, and so by strong duality, 𝑠∗ = ®0. From the dual, we conclude
that 𝑧 = ®0, and therefore 𝐴T𝑦∗ ≤ 𝐴T𝑦∗ + 𝑠∗ + 𝑧 = 𝑐 = ®0. On the other hand, by
assumption the objective value of the dual is positive, and so 𝑦T𝑏 ≥ 𝑦T𝑏+2𝑀®1T𝑧 > 0.

Feasibility of the dual of (4.1) can be decided by running (Init-LP) on data (𝐴, ®0, 𝑐)
and 𝑀 > ( �̄�𝐴 + 1)‖𝑐‖ with the same argumentation: Either the objective value of
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the dual is 0 and therefore the dual optimal solution (𝑦∗,
¯
𝑠∗, 𝑠∗, 𝑠∗) corresponds to a

feasible dual solution of (4.1) or the objective value is negative and we extract a dual
infeasibility certificate in the following way: By assumption 𝑐T𝑥 ≤ 𝑐T𝑥 + 𝑀®1T

¯
𝑥 < 0.

Furthermore, there exists a basic optimal solution to the dual of (Init-LP) with
¯
𝑠 > ®0

and therefore
¯
𝑥∗ = ®0 for the optimal primal solution (

¯
𝑥∗, 𝑥∗, 𝑥∗). So, we have

𝐴𝑥∗ = 𝑏 = ®0, together with 𝑐T𝑥 < 0 yielding the certificate.

Finding the right value of 𝑀 While Algorithm 4 does not require any estimate
on �̄�∗ or �̄�, the initialization needs to set 𝑀 ≥ max{( �̄�𝐴 + 1)‖𝑐‖, �̄�𝐴‖𝑑‖} as in
Proposition 4.7.3.

A straightforward guessing approach (attributed to J. Renegar in [198]) starts
with a constant guess, say �̄�𝐴 = 100, constructs the extended system, and runs the
algorithm. In case the optimal solution to the extended system does not map to an
optimal solution of (4.1), we restart with �̄�𝐴 = 1002 and try again; we continue
squaring the guess until an optimal solution is found.

This would still require a series of log log �̄�𝐴 guesses, and thus, result in a
dependence on �̄�𝐴 in the running time. However, if we initially rescale our system
using the near-optimal rescaling Theorem 4.2.5, the we can turn the dependence from
�̄�𝐴 to �̄�∗𝐴. The overall iteration complexity remains 𝑂 (𝑛2.5 log 𝑛 log( �̄�∗𝐴 + 𝑛)), since
the running time for the final guess on �̄�∗𝐴 dominates the total running time of all
previous computations due to the repeated squaring.

An alternative approach, that does not rescale the system, is to use Theorem 4.2.5
to approximate �̄�𝐴. In this case we repeatedly square a guess of �̄�∗𝐴 instead of �̄�𝐴
which takes O(log log �̄�∗𝐴) iterations until our guess corresponds to a valid upper
bound for �̄�𝐴.

Note that either guessing technique can handle bad guesses gracefully. For the
first phase, if neither a feasible solution to (4.1) is returned nor a Farkas’ certificate
can be extracted, we have proof that the guess was too low by the above paragraph.
Similarly, in phase two, when feasibility was decided in the affirmative for primal
and dual, an optimal solution to (Init-LP) that corresponds to an infeasible solution
to (4.1) serves as a certificate that another squaring of the guess is necessary.



Chapter 5

A Simple Method for Convex Optimization in the
Oracle Model

We give a simple and natural method for computing approximately optimal solutions
for minimizing a convex function 𝑓 over a convex set 𝐾 given by a separation oracle.
Our method utilizes the Frank–Wolfe algorithm over the cone of valid inequalities
of 𝐾 and subgradients of 𝑓 . Under the assumption that 𝑓 is 𝐿-Lipschitz and that 𝐾
contains a ball of radius 𝑟 and is contained inside the origin centered ball of radius
𝑅, using 𝑂 ( (𝑅𝐿)

2

𝜀2 · 𝑅
2

𝑟2 ) iterations and calls to the oracle, our main method outputs a
point 𝑥 ∈ 𝐾 satisfying 𝑓 (𝑥) ≤ 𝜀 +min𝑧∈𝐾 𝑓 (𝑧).

Our algorithm is easy to implement, and we believe it can serve as a useful
alternative to existing cutting plane methods. As evidence towards this, we show
that it compares favorably in terms of iteration counts to the standard LP based
cutting plane method and the analytic center cutting plane method, on a testbed of
combinatorial, semidefinite and machine learning instances.

5.1 Introduction

We consider the problem of minimizing a convex function 𝑓 : R𝑛 → R over a compact
convex set𝐾 ⊆ R𝑛. We assume that𝐾 contains an (unknown) Euclidean ball of radius
𝑟 > 0 and is contained inside the origin centered ball of radius 𝑅 > 0, and that 𝑓
is 𝐿-Lipschitz. We have first-order access to 𝑓 that yields 𝑓 (𝑥) and a subgradient
of 𝑓 at 𝑥 for any given 𝑥. Moreover, we only have access to 𝐾 through a separation
oracle (SO), which, given a point 𝑥 ∈ R𝑛, either asserts that 𝑥 ∈ 𝐾 or returns a linear
constraint valid for 𝐾 but violated by 𝑥.

Convex optimization in the SO model is one of the fundamental settings in
optimization. The model is relevant for a wide variety of implicit optimization
problems, where an explicit description of the defining inequalities for 𝐾 is either
too large to store or not fully known. The SO model was first introduced in [152]

This chapter is based on [48], a joint work with Daniel Dadush, Christopher Hojny, and Stefan
Weltge.
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where it was shown that an additive 𝜀-approximate solution can be obtained using
𝑂 (𝑛 log(𝐿𝑅/(𝜀𝑟))) queries via the center of gravity method and𝑂 (𝑛2 log(𝐿𝑅/(𝜀𝑟)))
queries via the ellipsoid method. This latter result was used by Khachiyan [122]
to give the first polynomial time method for linear programming. The study of
oracle-type models was greatly extended in the classic book of Grötschel, Lovász,
and Schrijver [103], where many applications to combinatorial optimization were
provided. Further progress on the SO model was given by Vaidya [191], who showed
that the 𝑂 (𝑛 log(𝐿𝑅/(𝜀𝑟))) oracle complexity can be efficiently achieved using the
so-called volumetric barrier as a potential function, where the best current running
time for such methods was given very recently [114,133].

From the practical perspective, two of the most popular methods in the SO model
are the standard linear programming (LP) based cutting plane method, independently
discovered by Kelley [120], Goldstein-Cheney [41] as well as Gomory [99] (in the
integer programming context), and the analytic center cutting plane method [175]
(ACCPM).

The LP based cutting plane method, which we henceforth dub the standard cut
loop, proceeds as follows: starting with finitely many linear underestimators of 𝑓
and linear constraints valid for 𝐾 , in each iteration it solves a linear program that
minimizes the lower envelope of 𝑓 subject to the current linear relaxation of 𝐾 . The
resulting point 𝑥 is then used to query 𝑓 and the SO to obtain a new underestimator
for 𝑓 and a new constraint valid for 𝐾 . Note that if 𝑓 is a linear function, it repeatedly
minimizes 𝑓 over linear relaxations of 𝐾 . While it is typically fast in practice, it can
be unstable, and no general quantitative convergence guarantees are known for the
standard cut loop.

To link to integer programming, in that context 𝐾 is the convex hull of integer
points of some polytope𝑃 and the objective is often linear, and the method is initialized
with a linear description of 𝑃. A crucial difference there is that the separator SO is
generally only efficient when queried at vertices of the current relaxation.

ACCPM is a barrier based method, in which the next query point is the minimizer
of the barrier for the current inequalities in the system. ACCPM is in general
a more stable method with provable complexity guarantees. Interestingly, while
variants of ACCPM achieving 𝑂 (𝑛 log(1/𝜀)2) queries exist, achieved by judiciously
dropping constraints [8], the more practical variants achieve only converge in𝑂 (𝑛/𝜀2)
queries [153].

In this chapter, we describe a new method for convex optimization in the SO model
that computes an additive 𝜀-approximate solution within𝑂 (𝑅4𝐿2/𝑟2𝜀2) iterations. Our
algorithm is easy to implement, and we believe it can serve as a useful alternative to
existing methods. In our experimental results, we show that it compares favorably in
terms of iteration counts to the standard cut loop and the analytic center cutting plane
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method, on a testbed of combinatorial, semidefinite and machine learning instances.
Before explaining our approach, we review the relevant work in related models.

To begin, there has been a tremendous amount of work in the context of first-order
methods [16,18], where the goal is to minimize a possibly complicated function, given
by a gradient oracle, over a simple domain 𝐾 (e.g., the simplex, cube, ℓ2 ball). These
methods tend to have cheap iterations and to achieve poly(1/𝜀) convergence rates.
They are often superior in practice when the requisite accuracy is low or moderate,
e.g., within 1% of optimal. For these methods, often variants of (sub-)gradient
descent, it is generally assumed that computing (Euclidean) projections onto 𝐾 as
well as linear optimization over 𝐾 are easy. If one only assumes access to a linear
optimization (LO) oracle on 𝐾 , 𝐾 can become more interesting (e.g., the shortest-
path or spanning-tree polytope). In this context, one of the most popular methods is
the so-called Frank–Wolfe algorithm [84] (see [111] for a modern treatment), which
iteratively computes a convex combination of vertices of 𝐾 to obtain an approximate
minimizer of a smooth convex function.

In the context of combinatorial optimization, there has been a considerable line
of work on solving (implicit) packing and covering problems using the so-called
multiplicative weights update (MWU) framework [87, 158, 171]. In this framework,
one must be able to implement an MWU oracle, which in essence computes optimal
solutions for the target problem after the “difficult” constraints have been aggregated
according to the current weights. This framework has been applied for getting fast
(1 ± 𝜀)-approximate solutions to multi-commodity flow [87, 171], packing spanning
trees [40], the Held–Karp approximation for TSP [39], and more, where the MWU
oracle computes shortest paths, minimum cost spanning trees, minimum cuts respec-
tively in a sequence of weighted graphs. The MWU oracle is in general just a special
type of LO oracle, which can often be interpreted as a SO that returns a maximally
violated constraint. While certainly related to the SO model, it is not entirely clear
how to adapt MWU to work with a general SO, in particular in settings unrelated to
packing and covering.

A final line of work, which directly inspires our work, has examined simple
iterative methods for computing a point in the interior of a coneΣ that directly apply in
the SO model. The application of simple iterative methods for solving conic feasibility
problems can be traced to Von Neumann in 1948 (see [61]), and a variant of this
method, the perceptron algorithm [164] is still very popular today. Von Neumann’s
algorithm computes a convex combination of the defining inequalities of the cone,
scaled to be of unit length, of nearly minimal Euclidean norm. The separation
oracle is called to find an inequality violated by the current convex combination, and
this inequality is then used to make the current convex combination shorter, in an
analogous way to Frank–Wolfe. This method is guaranteed to find a point in the cone
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in 𝑂 (1/𝜚2) iterations, where 𝜚 is the so-called width of Σ (the radius of the largest
ball contained in Σ centered at a point of norm 1). Starting in 2004, polynomial time
variants of this and related methods (i.e., achieving log 1/𝜚 dependence) have been
found [19, 42, 73], which iteratively “rescale” the norm to speed up the convergence.
These rescaled variants can also be applied in the oracle setting [17, 44, 54] with
appropriate adaptations. The main shortcoming of existing conic approaches is that
they are currently not well-adapted for solving optimization problems rather than
feasibility problems.

Our approach. In this work, we build upon von Neumann’s approach and utilize
the Frank–Wolfe algorithm over the cone of valid inequalities of 𝐾 as well as the sub-
gradients of 𝑓 in a way that yields a clean, simple, and flexible framework for solving
general convex optimization problems in the SO model. For simpler explanation, let
us assume that 𝑓 (𝑥) = 〈𝑐, 𝑥〉 is a linear function and that we know an upper bound
UB on the minimum of 𝑓 over 𝐾 . Given some linear inequalities 〈𝑎𝑖 , 𝑥〉 ≤ 𝑏𝑖 that
are valid for all 𝑥 ∈ 𝐾 , our goal is to find convex combinations 𝑝 of the homogenized
points (𝑐,UB) and (𝑎𝑖 , 𝑏𝑖) that are “close” to the origin. Note that if 𝑝 = ®0, the fact
that 𝐾 is full-dimensional implies that (𝑐,UB) appears with a nonzero coefficient
and hence (−𝑐,−UB) is a nonnegative combination of the points (𝑎𝑖 , 𝑏𝑖), which in
turn shows that UB is equal to the minimum of 𝑓 over 𝐾 . In view of this, we will
consider a potential Φ : R𝑛+1 → R+ with the property that if Φ(𝑝) is sufficiently
small, then the convex combination will yield an explicit certificate that UB is close
to the minimum of 𝑓 over 𝐾 .

Given a certain convex combination 𝑝, note that the gradient of Φ at 𝑝 provides
information about whether moving towards one of the known points will (signifi-
cantly) decrease Φ(𝑝). However, if no such known point exists, it turns out that
the “dehomogenization” of the gradient (a scaling of its projection onto the first 𝑛
coordinates) is a natural point 𝑥 ∈ R𝑛 to query the SO with. In fact, if 𝑥 ∈ 𝐾 , it will
have improved objective value with respect to 𝑓 . Otherwise, the SO will provide a
linear inequality such that moving towards its homogenization decreases Φ(𝑝).

In this work, we will show that the above paradigm immediately yields a rigorous
algorithm for various natural choices of Φ and scalings of inequalities. We will
also see that general convex functions can be directly handled in the same manner
by simply replacing (𝑐,UB) with all subgradient cuts of 𝑓 learned throughout the
iterations. The same applies to pure feasibility problems for which we set 𝑓 = ®0. The
convergence analysis of our algorithm is simple and based on standard estimates for
the Frank–Wolfe algorithm.

Besides its conceptual simplicity and distiction to existing methods for convex
optimization in the SO model, we also regard it as a practical alternative. In fact,
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in terms of iterations, our vanilla implementation in Julia [49] performs similarly
and often even better than the standard cut loop and the analytic center cutting
plane method evaluated on a testbed of oracle-based linear optimization problems
for matching problems, semidefinite relaxations of the maximum cut problem, and
LPBoost. Moreover, the flexibility of our framework leaves several degrees of freedom
to obtain optimized implementations that outperform our naive implementation.

5.2 Algorithm

Recall that we are given first-order access to a convex function 𝑓 : R𝑛 → R that we
want to minimize over a convex body𝐾 ⊆ R𝑛. In the case where 𝑓 is not differentiable,
with a slight abuse of notation we interpret ∇ 𝑓 (𝑥) to be any subgradient of 𝑓 at 𝑥.
We can access 𝐾 by a separation oracle that, given a point 𝑥 ∈ R𝑛, either asserts that
𝑥 ∈ 𝐾 or returns a point (𝑎, 𝑏) ∈ A ⊆ R𝑛+1 with 〈𝑎, 𝑥〉 > 𝑏 such that 〈𝑎, 𝑦〉 ≤ 𝑏 holds
for all 𝑦 ∈ 𝐾 . Here, 〈·, ·〉 denotes the standard scalar product and we assume that all
points in A correspond to linear constraints valid for 𝐾 . To state our algorithm, let
‖ · ‖ denote any norm on R𝑛+1 and ‖ · ‖∗ its dual norm. Moreover, let Φ : R𝑛+1 → R+
be any strictly convex and differentiable function with min𝑥∈R𝑛+1 Φ(𝑥) = Φ(®0) = 0.
Our method is given in Algorithm 5, in which we denote the number of iterations
by 𝑇 for later reference. However, 𝑇 does not need to be specified in advance, and
the algorithm may be stopped at any time, e.g., when a solution or bound of desired
accuracy has been found.

In line 5, ∇Φ(𝑝𝑡 ) [1 : 𝑛] denotes the first 𝑛 components of ∇Φ(𝑝𝑡 ), and
∇Φ(𝑝𝑡 ) [𝑛 + 1] denotes the last component of ∇Φ(𝑝𝑡 ). The sets 𝐴𝑡 and 𝐺𝑡 denote
the already known/separated inequalities and objective gradients during iteration 𝑡.

Lemma 5.2.1. When 𝑥𝑡 ∈ R𝑛 is computed in iteration 𝑡 of Algorithm 5, it is well-
defined and we have 〈𝑐, 𝑥𝑡〉 ≤ 𝑑 for every (𝑐, 𝑑) ∈ 𝐴𝑡 ∪ 𝐺𝑡 .

Proof. Since 𝑝𝑡 minimizes Φ over conv(𝐴𝑡 ∪ 𝐺𝑡 ), for every 𝑞 ∈ conv(𝐴𝑡 ∪ 𝐺𝑡 )
we have 〈∇Φ(𝑝𝑡 ), 𝑞 − 𝑝𝑡〉 ≥ 0. If 𝑝𝑡 ≠ ®0 then from strict convexity of Φ and
min𝑥∈R𝑛+1 Φ(𝑥) = Φ(®0) = 0 we get

〈∇Φ(𝑝𝑡 ), 𝑞〉 ≥ 〈∇Φ(𝑝𝑡 ), 𝑝𝑡〉 > 0. (5.1)

First, apply this inequality to 𝑞 = (®0, 1)/‖(®0, 1)‖∗ ∈ 𝐴𝑡 and conclude ∇Φ(𝑝𝑡 ) [𝑛 +
1] > 0. This makes sure that 𝑥𝑡 can be computed. Second, we apply (5.1) to
𝑞 = (𝑐, 𝑑) ∈ 𝐴𝑡 ∪ 𝐺𝑡 and find that 𝑑 − 〈𝑐, 𝑥𝑡〉 = 1

∇Φ(𝑝𝑡 ) [𝑛+1] 〈∇Φ(𝑝𝑡 ), (𝑐, 𝑑)〉 > 0,
thus 𝑥𝑡 satisfies 〈𝑐, 𝑥𝑡〉 ≤ 𝑑 for all (𝑐, 𝑑) ∈ 𝐴𝑡 ∪ 𝐺𝑡 . □
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Algorithm 5

1: UB←∞, 𝐴1 ← {(®0, 1)/‖(®0, 1)‖∗}, 𝐺1 ← ∅
2: for 𝑡 = 1, 2, . . . , 𝑇 do
3: 𝑝𝑡 ← arg min{Φ(𝑝) : 𝑝 ∈ conv(𝐴𝑡 ∪ 𝐺𝑡 )}
4: if 𝑝𝑡 = ®0 then return UB.
5: 𝑥𝑡 ← −∇Φ(𝑝𝑡 ) [1 : 𝑛]/∇Φ(𝑝𝑡 ) [𝑛 + 1]
6: if 𝑥𝑡 ∈ 𝐾 then
7: UB← min{UB, 𝑓 (𝑥𝑡 )}
8: 𝐴𝑡+1 ← 𝐴𝑡 .
9: 𝐺𝑡+1 ← 𝐺𝑡 ∪ {(∇ 𝑓 (𝑥𝑡 ), 〈∇ 𝑓 (𝑥𝑡 ), 𝑥𝑡〉)}

10: else
11: get (𝑎, 𝑏) ∈ A, with 〈𝑎, 𝑥𝑡〉 > 𝑏 and ‖(𝑎, 𝑏)‖∗ = 1
12: 𝐴𝑡+1 ← 𝐴𝑡 ∪ {(𝑎, 𝑏)}.
13: 𝐺𝑡+1 ← 𝐺𝑡 .
14: return UB.

Note that, for the sake of presentation, in line 3 we require 𝑝𝑡 to be the convex
combination of minimum Φ-value. However, it is usually not necessary to compute
such a minimum. The same convergence rates can be obtained if, in every itera-
tion, 𝑝𝑡 is a suitable convex combination of 𝑝𝑡−1 and some (𝑐, 𝑑) ∈ 𝐴𝑡 ∪ 𝐺𝑡 with
〈∇Φ(𝑝𝑡−1), (𝑐, 𝑑)〉 < 0. If the last coordinate of 𝑝𝑡−1, as discussed in the above
proof, is not positive, then such an update can be made towards (®0, 1)/‖(®0, 1)‖∗ ∈ 𝐴𝑡 .
Any such update will significantly decrease Φ(𝑝𝑡 ), and the computation in line 3
is guaranteed to make at least that much progress. This shows that simple updates
of 𝑝𝑡 , which may be more preferable in practice, still suffice to achieve the claimed
convergence rates.

Definition 5.2.2. A continuously differentiable function 𝑔 : R𝑘 → R is called 𝛽-
smooth with respect to a norm ‖ · ‖ if the gradient ∇𝑔 is 𝛽-Lipschitz, that is

‖∇𝑔(𝑥) − ∇𝑔(𝑦)‖ ≤ 𝛽‖𝑥 − 𝑦‖

holds for all 𝑥, 𝑦 ∈ R𝑘 .

Lemma 5.2.3. Suppose that Φ is 1-smooth with respect to ‖ · ‖∗ and that

‖(∇ 𝑓 (𝑥), 〈∇ 𝑓 (𝑥), 𝑥〉)‖∗ ≤ 1

for every 𝑥 ∈ 𝐾 . Then for every 𝑡 = 1, . . . , 𝑇 , Algorithm 5 satisfies Φ(𝑝𝑡 ) ≤ 8
𝑡+1 .
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Proof. Let 𝛾𝑡 = 2
𝑡+1 . If we added a constraint 𝑣 in iteration 𝑡, i.e., if 𝐴𝑡+1 ∪ 𝐺𝑡+1 =

{𝑣} ∪ 𝐴𝑡 ∪ 𝐺𝑡 , then we are guaranteed that (1 − 𝛾𝑡 )𝑝𝑡 + 𝛾𝑡𝑣 ∈ conv(𝐴𝑡+1 ∪ 𝐺𝑡+1)
and that 〈∇Φ(𝑝𝑡 ), 𝑣〉 < 0. Therefore we get, by 1-smoothness, by construction, and
by convexity, that

Φ(𝑝𝑡+1) −Φ(𝑝𝑡 ) ≤ 〈∇Φ(𝑝𝑡 ), (𝑝𝑡+1 − 𝑝𝑡 )〉 +
1
2
‖𝑝𝑡+1 − 𝑝𝑡 ‖2

≤ 𝛾𝑡 〈∇Φ(𝑝𝑡 ), (𝑣 − 𝑝𝑡 )〉 + 2𝛾2
𝑡

≤ 𝛾𝑡 〈∇Φ(𝑝𝑡 ), (®0 − 𝑝𝑡 )〉 + 2𝛾2
𝑡

≤ −𝛾𝑡Φ(𝑝𝑡 ) + 2𝛾2
𝑡

From this, we can derive that Φ(𝑝𝑡+1) ≤ (1 − 𝛾𝑡 )Φ(𝑝𝑡 ) + 2𝛾2
𝑡 . Furthermore, by 1-

smoothness we know thatΦ(𝑝1) ≤ 1/2. By induction it follows thatΦ(𝑝𝑡 ) ≤ 8
𝑡+1 . □

The proof of the above lemma is in line with standard proofs for the analysis of
Frank–Wolfe algorithms, see, e.g., Theorem 1 in [111].

The following lemma yields conditions under which a small value of Φ(𝑝𝑡 )
implies that UB is close to the minimum of 𝑓 over 𝐾 . Note in particular that it proves
that if ‖𝑝𝑡 ‖ = 0 then UB = OPT, where OPT := min𝑥∈𝐾 𝑓 (𝑥) is the optimal value of
the optimization problem.

Lemma 5.2.4. Assume that ‖(𝑥,−1)‖ ≤ 2 holds for every 𝑥 ∈ 𝐾 , and there exist
𝑧 ∈ 𝐾 and 𝛼 ∈ (0, 1] such that 〈(𝑎, 𝑏), (−𝑧, 1)〉 ≥ 𝛼‖(−𝑧, 1)‖‖(𝑎, 𝑏)‖∗ holds for
every (𝑎, 𝑏) ∈ A ∪ {(®0, 1)}. Moreover, assume that ‖(∇ 𝑓 (𝑥), 〈∇ 𝑓 (𝑥), 𝑥〉)‖∗ ≤ 1
holds for every 𝑥 ∈ 𝐾 . If ‖𝑝𝑇 ‖ ≤ 𝛼/2 in Algorithm 5, then the returned value
satisfies UB ≥ OPT ≥ UB − 4‖𝑝𝑇 ‖∗ (1+𝛼)

𝛼 .

Proof. Let 𝑥∗ ∈ 𝐾 minimize 𝑓 (𝑥) over 𝑥 ∈ 𝐾 and let 𝐹 ⊆ [𝑇 − 1] be the set of
iterations 𝑡 (except the last one) in which 𝑥𝑡 ∈ 𝐾 . Now write the point 𝑝𝑇 as a convex
combination

𝑝𝑇 =
∑

(𝑎,𝑏) ∈𝐴𝑇
𝜆 (𝑎,𝑏) (𝑎, 𝑏) +

∑
𝑡 ∈𝐹

𝛾𝑡 (∇ 𝑓 (𝑥𝑡 ), 〈∇ 𝑓 (𝑥𝑡 ), 𝑥𝑡〉)
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where 𝜆 ≥ ®0, 𝛾 ≥ ®0 and ‖(𝜆, 𝛾)‖1 = 1. Then we have∑
𝑡 ∈𝐹

𝛾𝑡 ( 𝑓 (𝑥𝑡 ) − 𝑓 (𝑥∗)) ≤
∑
𝑡 ∈𝐹

𝛾𝑡 〈∇ 𝑓 (𝑥𝑡 ), 𝑥𝑡 − 𝑥∗〉

=
〈 ∑
𝑡 ∈𝐹

𝛾𝑡 (∇ 𝑓 (𝑥𝑡 ), 〈∇ 𝑓 (𝑥𝑡 ), 𝑥𝑡〉), (−𝑥∗, 1)
〉

≤
〈 ∑
𝑡 ∈𝐹

𝛾𝑡 (∇ 𝑓 (𝑥𝑡 ), 〈∇ 𝑓 (𝑥𝑡 ), 𝑥𝑡〉) +
∑

(𝑎,𝑏) ∈𝐴𝑇
𝜆 (𝑎,𝑏) (𝑎, 𝑏), (−𝑥∗, 1)

〉
= 〈𝑝𝑇 , (−𝑥∗, 1)〉
≤ ‖𝑝𝑇 ‖∗ · ‖ (−𝑥∗, 1)‖ ≤ 2‖𝑝𝑇 ‖∗.

Here, the inequalities respectively arise from convexity of 𝑓 , that 𝑥∗ ∈ 𝐾 satisfies
〈(𝑎, 𝑏), (−𝑥∗, 1)〉 ≥ 0 for every (𝑎, 𝑏) ∈ 𝐴𝑇 , and the Cauchy–Schwarz inequality. In
particular, we find that min𝑡 ∈𝐹 𝑓 (𝑥𝑡 ) − 𝑓 (𝑥∗) ≤ 2‖𝑝𝑇 ‖∗∑

𝑡∈𝐹 𝛾𝑡
whenever ∑

𝑡 ∈𝐹 𝛾𝑡 > 0. To
lower bound the denominator, we use the assumptions on 𝑧 to derive the inequalities

𝛼

(
1 −

∑
𝑡 ∈𝐹

𝛾𝑡

)
‖(−𝑧, 1)‖ = 𝛼‖(−𝑧, 1)‖

∑
(𝑎,𝑏) ∈𝐴𝑇

𝜆 (𝑎,𝑏)

≤ 〈
∑

(𝑎,𝑏) ∈𝐴𝑇
𝜆 (𝑎,𝑏) (𝑎, 𝑏), (−𝑧, 1)〉 ( since ‖(𝑎, 𝑏)‖∗ = 1 )

= 〈𝑝𝑇 , (−𝑧, 1)〉 −
∑
𝑡 ∈𝐹

𝛾𝑡 〈(∇ 𝑓 (𝑥𝑡 ), 〈∇ 𝑓 (𝑥𝑡 ), 𝑥𝑡〉), (−𝑧, 1)〉

≤ ‖𝑝𝑇 ‖∗ · ‖ (−𝑧, 1)‖ +
∑
𝑡 ∈𝐹

𝛾𝑡 ‖(∇ 𝑓 (𝑥𝑡 ), 〈∇ 𝑓 (𝑥𝑡 ), 𝑥𝑡〉)‖∗ · ‖ (−𝑧, 1)‖.

Now observe that ‖(∇ 𝑓 (𝑥𝑡 ), 〈∇ 𝑓 (𝑥𝑡 ), 𝑥𝑡〉)‖∗ ≤ 1 for every 𝑡 ∈ 𝐹 and divide through
by ‖(−𝑧, 1)‖ to find 𝛼(1 − ∑

𝑡 ∈𝐹 𝛾𝑡 ) ≤ ‖𝑝𝑇 ‖∗ +
∑
𝑡 ∈𝐹 𝛾𝑡 . Hence, if ‖𝑝𝑇 ‖∗ ≤ 𝛼

2
then 𝛼/2 ≤ (𝛼 + 1)∑𝑡 ∈𝐹 𝛾𝑡 . This lower bound on ∑

𝑡 ∈𝐹 𝛾𝑡 suffices to prove the
lemma. □

Combining the previous two lemmas, we obtain the following convergence rate
of our algorithm:

Theorem 5.2.5. Assume that 𝛽 > 0 is such that Φ(𝑥) ≥ 𝛽‖𝑥‖2∗ for all 𝑥 ∈ R𝑛+1.
Under the assumptions of Lemmas 5.2.3 and 5.2.4, Algorithm 5 computes, for every
𝑇 ≥ 32

𝛽𝛼2 , a value UB < ∞ satisfying

UB ≥ min
𝑥∈𝐾

𝑓 (𝑥) ≥ UB − 16√
𝛽(𝑇 + 2)

· 1 + 𝛼
𝛼

.
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Proof. After 𝑇 iterations, we have 𝛽‖𝑝𝑇 ‖2∗ ≤ Φ(𝑝𝑇 ) ≤ 8
𝑇 +2 ≤ 𝛽𝛼2/4 from using

Lemma 5.2.3. Since then ‖𝑝𝑇 ‖∗ ≤
√

8√
𝛽 (𝑇 +2)

≤ 𝛼/2, Lemma 5.2.4 tells us that

OPT ≥ UB − 16(1+𝛼)√
𝛽 (𝑇 +2)𝛼

. □

Let us now apply the previous findings to a concrete setting, in which we assume
that the objective function 𝑓 is 𝐿-Lipschitz, i.e., | 𝑓 (𝑥) − 𝑓 (𝑦) | ≤ 𝐿‖𝑥 − 𝑦‖2 for all
𝑥, 𝑦 ∈ R𝑛.

Theorem 5.2.6. Let 𝐾 ⊆ R𝑛 be a convex body satisfying 𝑧 + 𝑟B𝑛2 ⊆ 𝐾 ⊆ 𝑅B
𝑛
2 , given

by a separation oracle A, and let 𝑓 : R𝑛 → R be an 𝐿-Lipschitz convex function
given by a subgradient oracle.

Apply Algorithm 5 to the function 1
𝑅𝐿 𝑓 using norm ‖(𝑥, 𝑦)‖ B

√
2‖(𝑥/𝑅, 𝑦)‖2

and potential Φ(𝑎, 𝑏) B 1
4 ‖(𝑅𝑎, 𝑏)‖22. Then, for every 𝜀 > 0, after

𝑇 = 𝑂

(
𝑅2

𝑟2 ·
𝑅2𝐿2

𝜀2

)
iterations we have UB ≥ min𝑥∈𝐾 𝑓 (𝑥) ≥ UB − 𝜀.

Proof. By replacing 𝑓 (𝑥) by 𝑓 (𝑅𝑥)/(𝑅𝐿), 𝐾 by 𝐾/𝑅, 𝜀 by 𝜀/(𝑅𝐿), 𝑟 by 𝑟/𝑅,
we may assume that 𝑅 = 𝐿 = 1, that 𝑟 ∈ (0, 1]. After this rescaling, note
‖(𝑥, 𝑦)‖ B

√
2‖(𝑥, 𝑦)‖2 and Φ(𝑎, 𝑏) B 1

4 ‖(𝑎, 𝑏)‖22 = 1
2 ‖(𝑎, 𝑏)‖2∗. Crucially, note

that Algorithm 5 is invariant under the above replacement.
We now claim that our choice of input satisfies the conditions of Theorem 5.2.5

with 𝛽 = 1/2 and 𝛼 = 𝑟/4. Given the claim, Theorem 5.2.5 directly proves the result.
To prove the claim, apart from verifying that the bounds on 𝛽 and 𝛼 hold, we must
verify smoothness of Φ with respect to the dual norm, a bound of 2 on the norm of
(−𝑥, 1) for 𝑥 ∈ 𝐾 , as well as a dual norm bound of 1 on (∇ 𝑓 (𝑥), 〈∇ 𝑓 (𝑥), 𝑥〉) for
𝑥 ∈ 𝐾 .

The setting 𝛽 = 1/2 is direct by definition of Φ. Since ‖ · ‖∗ is a Euclidean norm,
it is immediate that Φ is 1-smooth with respect to ‖ · ‖∗. For each 𝑥 ∈ 𝐾 , using that
𝑅 = 𝐿 = 1, we may also verify that

‖(𝑥, 1)‖ =
√

2‖(𝑥, 1)‖2 =
√

2
√
‖𝑥‖22 + 1 ≤

√
2
√
𝑅2 + 1 = 2,
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and

‖(∇ 𝑓 (𝑥), 〈∇ 𝑓 (𝑥), 𝑥〉)‖∗ =
1
√

2
‖(∇ 𝑓 (𝑥), 〈∇ 𝑓 (𝑥), 𝑥〉)‖2

≤ 1
√

2

√
‖∇ 𝑓 (𝑥)‖22 + ‖∇ 𝑓 (𝑥)‖2‖𝑥‖2

≤ 1
√

2

√
𝐿2 + 𝐿2𝑅2 = 1.

We now show the lower bound 𝛼 ≥ 𝑟/4. Firstly, since ‖(−𝑧, 1)‖‖(®0, 1)‖∗ =
‖(−𝑧, 1)‖2‖(®0, 1)‖2 ≤

√
2, we see that 〈(−𝑧, 1), (®0, 1)〉 = 1 ≥ 1

2 ‖(−𝑧, 1)‖‖(®0, 1)‖∗.
Next, any (𝑎, 𝑏) returned by the oracle is normalized so that ‖(𝑎, 𝑏)‖∗ = 1 ⇔
‖(𝑎, 𝑏)‖2 =

√
2. Note then that ‖(−𝑧, 1)‖‖(𝑎, 𝑏)‖∗ ≤ 2. From here, we observe that

〈(𝑎, 𝑏), (−𝑧, 1)〉 = 𝑏 − 〈𝑎, 𝑧〉 = 𝑏 − 〈𝑎, 𝑧 + 𝑟𝑎/‖𝑎‖2〉 + 𝑟 ‖𝑎‖2 ≥ 𝑟 ‖𝑎‖2,

since 𝑧+𝑟𝑎/‖𝑎‖2 ∈ 𝐾 by assumption. Furthermore, 𝑏− 〈𝑎, 𝑧〉 ≥ 𝑏− ‖𝑎‖2‖𝑧‖2 ≥ 𝑏−
‖𝑎‖2 and 0 ≤ 𝑏−〈𝑎, 𝑧〉 ≤ 𝑏+‖𝑎‖2. Thus, 𝑏−〈𝑎, 𝑧〉 ≥ max{𝑟 ‖𝑎‖2, 𝑏−‖𝑎‖2}. We now
examine two cases. If ‖𝑎‖2 ≥ 1/2, then 𝑏 − 〈𝑎, 𝑧〉 ≥ 𝑟/2 ≥ 𝑟/4 · ‖ (−𝑧, 1)‖‖(𝑎, 𝑏)‖∗.
If ‖𝑎‖2 ≤ 1/2, then |𝑏 | ≥ 1 since ‖(𝑎, 𝑏)‖22 = 2. Since 𝑏 + ‖𝑎‖2 ≥ 0⇒ 𝑏 ≥ 1. This
gives 𝑏 − 〈𝑎, 𝑧〉 ≥ 𝑏 − ‖𝑎‖2 ≥ 1/2 ≥ 𝑟/2. Thus, 𝛼 ≥ 𝑟/4, as needed. □

5.3 Computational experiments

In this section, we provide a computational comparison of our method with the
standard cut loop, the ellipsoid method, and the analytic center cutting plane method
on a testbed of linear optimization instances. For comparison purposes, all four
methods are embedded into a common cutting plane framework such that the same
termination criteria apply.

Framework. Each method has access to a separation oracle that is equipped with
a set of initial linear inequalities valid for 𝐾 (such as bounds on variables), which
are incorporated within each method in a straightforward way. For instance, we
initialize our algorithm by adding these constraints to the set 𝐴1. Moreover, for
each instance, we will be given a finite upper bound UB and incorporate the linear
inequality 𝑓 (𝑥) ≤ UB in a similar way. This upper bound gets updated whenever
a feasible solution of better objective value was found. Our framework collects all
inequalities queried by the current method and computes the resulting lower bound on
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the optimum value in every iteration. Each method is stopped whenever the difference
of upper and lower bound is below 10−3.

We will also inspect the possibility of a smart oracle that, regardless of whether
a given point 𝑥 is feasible, may still provide a valid inequality as well as a feasible
solution (for instance, by modifying 𝑥 in a simple way so that it becomes feasible).
For some problems we consider, such an oracle is available and will be specified
below.

Implementation. The framework has been implemented in julia 1.6.2 [20]
using JuMP [74] and Gurobi 9.1.1 [104]. To guarantee a fair comparison, all four
methods have been implemented in a straightforward fashion. We use the textbook
implementation of the ellipsoid method, and Badenbroek’s [10] implementation of
the analytic center cutting plane method. Our method is implemented [49] in the
spirit of Theorem 5.2.6, where 𝑝𝑡 is computed using Gurobi.

Test sets. We use three problem classes in our experiments: linear programming
formulations of the maximum-cardinality matching problem, semidefinite relaxations
of the maximum cut problem, and LPBoost instances for classification problems.

For the maximum-cardinality matching problem, we consider the linear program

max
{ ∑
𝑒∈𝐸

𝑥𝑒 : 𝑥 ∈ [0, 1]𝐸 ,
∑

𝑒∈𝛿 (𝑣)
𝑥𝑒 ≤ 1 for all 𝑣 ∈ 𝑉,∑

𝑒∈𝐸 [𝑈 ]
𝑥𝑒 ≤ |𝑈 |−1

2 for all𝑈 ⊆ 𝑉 with |𝑈 | odd
}
,

due to Edmonds [76], where 𝐺 = (𝑉, 𝐸) is a given undirected graph, 𝛿(𝑣) is the set
of all edges incident to 𝑣, and 𝐸 [𝑈] is the set of all edges with both endpoints in
𝑈. The latter constraints are handled within an oracle that computes an inequality
minimizing ( |𝑈 | − 1)/2 − ∑

𝑒∈𝐸 [𝑈 ] 𝑥𝑒, whereas the other inequalities are provided
as initial constraints. For the above problem, the smart version of the oracle does
not provide a feasible point since there is no obvious way of transforming a given
point into a feasible one. However, the smart version always provides the minimizing
inequality.

We consider 16 random instances with 500 nodes, generated as follows. For
each 𝑟 ∈ {30, 33, . . . , 75}we build an instance by sampling 𝑟 triples of nodes {𝑢, 𝑣, 𝑤}
and adding the edges of the induced triangles to the graph. We believe that these
instances are interesting because the 𝑟 triangles give rise to many constraints to
be added by the oracle. Moreover, we selected all 13 instances from the Color02
symposium [46] with less than 300 edges.
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Our second set of instances is based on the semidefinite relaxation of Goemans
and Williamson [90] for the maximum cut problem

max
{∑

{𝑣,𝑤 }∈𝐸 𝑐(𝑣, 𝑤) (1 − 𝑋𝑣,𝑤 )/2 : 𝑋𝑣,𝑤 = 𝑋𝑤,𝑣 for all 𝑣, 𝑤 ∈ 𝑉,

𝑋𝑣,𝑣 = 1 for all 𝑣 ∈ 𝑉,

𝑋 is positive semidefinite
}
,

where 𝑐 are edge weights on the edges of (𝑉, 𝐸). We add the constraints 𝑋 ∈
[−1, 1]𝑉×𝑉 to the initial constraints and handle the semidefiniteness constraint by
a separation oracle that, given 𝑋 , computes an eigenvector ℎ of 𝑋 of minimum
eigenvalue and returns the inequality 〈ℎℎ⊺, 𝑋〉 ≥ 0.

Within the smart version of the oracle, this constraint is returned regardless of the
feasibility of 𝑋 . If 𝑋 is not feasible, the semidefinite matrix 1

𝜆−1𝑋 −
𝜆
𝜆−1 𝐼 is returned,

where 𝜆 denotes the minimum eigenvalue and 𝐼 the identity matrix. We generated 10
complete graphs with edge weights chosen uniformly at random in [0, 1].

Our third set of instances arises from LPBoost [65], a classifier algorithm based on
column generation. To solve the pricing problem in column generation, the following
linear program is solved:

max
{
𝛾 : (𝛾, 𝜆) ∈ [−1, 1] × [0, 𝐷]𝑛, 〈®1, 𝜆〉 = 1,

𝑚∑
𝑖=1

𝑦𝑖ℎ(𝑥𝑖 , 𝜔)𝜆𝑖 ≤ −𝛾 for 𝜔 ∈ Ω
}
,

where Ω is a set of parameters, for 𝑖 ∈ [𝑚], 𝑥𝑖 is a data point labeled as 𝑦𝑖 = ±1,
ℎ(·, 𝜔) is a classifier parameterized by𝜔 ∈ Ω that predicts the label of 𝑥𝑖 as ℎ(𝑥𝑖 , 𝜔) ∈
{−1, +1}, and 𝐷 > 0 is a parameter. In our experiments, we restrict ℎ(·, 𝜔) to be a
decision tree of height 1, so-called tree stumps, and choose 𝐷 = 5

𝑛 . To separate a
point (𝛾′, 𝜆′), we use julia’s DecisionTree module to compute a decision stump
with score function 𝜆′ that weights the data points, whose corresponding inequality
classifies (𝛾′, 𝜆′) as feasible or not. A smart oracle always returns the computed
inequality and decreases 𝛾′ until (𝛾′, 𝜆′) becomes feasible according to the found
decision stump.

We extracted all data sets from the UC Irvine Machine Learning Repository [189]
that are labeled as multivariate, classification, ten-to-hundred attributes, hundred-to-
thousand instances. Data sets with alpha-numeric values or too many missing values
have been discarded.

Results. In what follows, we report on the number of iterations, i.e., oracle calls,
each method needs to obtain a gap (upper bound minus lower bound) below 10−3. We
impose a limit of 500 iterations per instance. Since we are testing naive implementa-
tions of each method, we do not report on running time.



5.3. Computational experiments 199

Figure 5.1: Typical primal/dual bounds for a random matching instance.

To get more insights on the primal and dual performance of the tested methods, we
also report on their primal and dual integrals. Note that we are solving maximization
problems in this section, as opposed to minimization problems in Section 5.2. That is,
primal (dual) solutions provide lower (upper) bounds on OPT. If ℓ𝑖 is the lower bound
on the optimal objective value OPT in iteration 𝑖, the primal integral is ∑500

𝑖=1
OPT−ℓ𝑖
OPT−ℓ1 .

The dual integral is computed analogously. If an integral is small, this indicates quick
progress in finding the correct value of the corresponding bound.

Table 5.1 summarizes our results without smart oracles, where all numbers are
average values. Here, “matching” refers to the random instances and “matching02”
to the instances from the Color02 symposium. The standard cut loop is referred to
as “LP”, the ellipsoid method as “ellipsoid”, the analytic center method as “analytic”,
and Algorithm 5 as “our”. Note that Table 5.1 does not report on the primal integral
of “LP” since the standard cut loop is a dual method.

We see that the ellipsoid and analytic center methods are struggling with solving
any instance within 500 iterations independent from the problem class. Our algorithm
solves the instances of the matching and max-cut problem much faster than the
standard cut loop. Only for LPBoost, the standard cut loop clearly dominates our
algorithm. To better understand this behavior, the integrals reveal that our algorithm
is better in improving the primal bound than the dual bound, with the only exception
being LPBoost. The analytic center method, however, performs significantly worse
than our algorithm in improving the primal bound. Regarding the dual bound, it
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Table 5.1: Comparison of iterations and dual/primal integral without smart oracles.

number of iterations
instance LP ellipsoid analytic our

matching 175.44 500.00 500.00 99.81
matching02 283.77 460.77 491.69 47.15
maxcut 265.30 500.00 500.00 193.30
LPboost 91.94 489.06 479.12 278.06

dual integral

matching 48.34 473.02 22.13 21.10
matching02 257.76 339.67 194.26 21.64
maxcut 7.72 44.32 3.48 6.14
LPboost 3.15 13.62 20.65 53.15

primal integral

matching — 52.12 9.29 4.40
matching02 — 23.41 5.91 2.13
maxcut — 21.15 9.04 6.32
LPboost — 459.97 100.71 64.08

performs better than our algorithm (with the exception of matching02). The ellipsoid
method is much worse in improving the primal bound in comparison with the analytic
center method and our algorithm. Regarding the dual bound, a similar trend can be
observed with LPBoost being an exception.

In summary, the analytic center cutting plane method improves the dual bound
more quickly than our algorithm. It can find a good primal solution early as the primal
integral is small, however it fails to close the remaining gap within the iteration limit.
Our algorithm is able to close the primal gap faster, with the trade-off of a slightly
slower dual convergence. A typical plot of the of the relative primal and dual gaps is
given in Figure 5.1.

In a second experiment, we investigate the effect of smart oracles. As Table 5.2
shows, there is no impact of smart oracles on the matching instances. For max-cut,
our algorithm gets slightly slower and the other methods do not seem to be affected
by smartness. For LPBoost, all methods benefit from a smart oracle with the biggest
effect for analytic center and our algorithm. The reason for the positive effect for
LPBoost might be in the particular structure of these instances: the objective just
consists of 𝛾 and every truncated convex combination 𝜆 is feasible.
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Table 5.2: Comparison of iterations and dual/primal integral with smart oracles.

number of iterations
instance LP ellipsoid analytic our

matching 175.44 500.00 500.00 99.81
matching02 283.77 460.77 491.69 47.15
maxcut 265.30 500.00 500.00 231.00
LPboost 86.94 346.38 88.00 127.00

dual integral

matching 48.34 473.02 22.13 21.10
matching02 257.76 339.67 194.26 21.64
maxcut 7.72 42.90 3.48 6.15
LPboost 3.04 13.50 5.54 5.46

primal integral

matching — 52.12 9.29 4.40
matching02 — 23.41 5.91 2.13
maxcut — 20.42 8.91 5.59
LPboost — 25.41 6.83 6.95
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Hoofdstuk 6

Samenvatting

Lineaire programmering (LP) is een wiskundige manier om verschillende praktische
optimalisatieproblemen te formuleren. Lineaire programmeringsproblemen komen
op veel plekken in de praktijk voor, zoals bij productieplanning. Er bestaan daarom
verschillende softwarepakketten die deze lineaire programmeringsproblemen kunnen
inlezen en vervolgens een goede oplossing uitrekenen. In dit proefschrift bestuderen
we enkele veelgebruikte algoritmes in deze software, en aan de hand van meetkundige
principes analyseren we hoe snel deze algoritmes zijn.

Een LP-probleem wordt omschreven aan de hand van randvoorwaarden, gegeven
door een matrix 𝐴 ∈ R𝑚×𝑛 en vector 𝑏 ∈ R𝑚, en een doelfunctie 𝑐 ∈ R𝑛. De taak
is om een vector 𝑥 ∈ R𝑛 te vinden met zo groot mogelijk inproduct 𝑐T𝑥, onder de
voorwaarde dat 𝑥 voldoet aan het stelsel van lineaire ongelijkheden 𝐴𝑥 ≤ 𝑏. Dit
schrijven we ook al op als

maximaliseer 𝑐T𝑥

met voorwaarde 𝐴𝑥 ≤ 𝑏.
De verzameling van alle vectoren die aan de randvoorwaarden voldoen noemen

we het toegestane gebied. Meetkundig gezien vormt dit gebied een veelvlak. Gegeven
dit veelvlak, vraagt een lineair programmeringsprobleem om een punt daarin te vinden
dat zo ver mogelijk in een aangegeven richting ligt.

6.1 De simplexmethode

Er worden verschillende algoritmes gebruikt om LP-problemen op te lossen. De
oudste hiervan is de simplexmethode, en vandaag de dag is dit nog steeds een van de
snelste algoritmes.

De simplexmethode kiest in het begin een deelverzameling 𝐵 ⊆ {1, . . . , 𝑚} van
de rijen van de matrix 𝐴. Voor de deelmatrix 𝐴𝐵 en vector 𝑏𝐵 vindt het algoritme
het punt 𝑥𝐵 ∈ R𝑛 dat voldoet aan het stelsel van vergelijkingen 𝐴𝐵𝑥𝐵 = 𝑏𝐵. De
keuze van 𝐵 wordt zo gedaan, dat het punt 𝑥𝐵 uniek gedefinieerd is en voldoet aan
alle randvoorwaarden 𝐴𝑥𝐵 ≤ 𝑏. Dit kunnen we meetkundig interpreteren als dat het
algoritme begint op een hoekpunt van de toegestane verzameling.
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Figuur 6.1: Een oranje veelvlak, met dikgedrukt een pad van hoekpunten verbonden
met ribben.

In elke stap van de simplexmethode wordt een enkel element uit de verzameling
𝐵 vervangen met een nieuwe index uit {1, . . . , 𝑚}, op zo een manier dat het nieuwe
punt 𝑥𝐵 ook weer voldoet aan alle randvoorwaarden. Dit vervangen gebeurt zodanig
dat het inproduct 𝑐T𝑥𝐵 groter wordt. Dit proces herhaalt zich totdat het een optimale
oplossing vind.

Meetkundig kunnen we ons voorstellen dat de simplexmethode op “reis” gaat
langs de rand van het toegestane gebied. Deze reis gaat van hoekpunt naar hoekpunt
over de ribben van dit veelvlak, en komt elke stap dichter bij de bestemming. Een
voorbeeld van een toegestane gebied en een mogelijke reis is te vinden in Figure 6.1.

In Hoofdstuk 2 bestuderen we hoeveel stappen de simplexmethode nodig heeft
om een LP-probleem op te lossen. Hier zullen we aannemen dat de data een kleine
hoeveelheid toevallige “ruis” bevat. We omschrijven een nieuwe variant op de sim-
plexmethode die weinig stappen nodig heeft. In Hoofdstuk 3 bestuderen we toevallige
veelvlakken. We bewijzen boven- en ondergrenzen op de lengte van de kortste reis
tussen hoekpunten.

6.2 Inwendige-punt methoden

De andere veelgebruikte algoritmen voor lineaire programmeringsproblemen zijn de
inwendige-punt methoden. Deze algoritmen werken met punten in het inwendige
van het toegestane gebied, in plaats van punten op de rand zoals de simplexmethode.
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Veel inwendige-punt methoden volgen gedurende hun looptijd een centraal pad door
het toegestane gebied, met een optimale geldige oplossing aan het einde van het pad.
Deze methoden zijn in praktijk erg snel, en in theorie kunnen we de looptijd van deze
methoden van boven begrensen met behulp van het “formaat” van de data 𝐴, 𝑏, en 𝑐.

Er bestaan inwendige-punt methoden die schaal-invariant zijn. Dit houdt in dat
het voor het algoritme niet uit maakt in welke schaal de grootheden in 𝐴, 𝑏, en 𝑐 zijn
geformuleerd, zoals bijvoorbeeld in meters en kilogrammen of in yards en pounds.
In theorie is dit een gewenste eigenschap.

Eerder onderzoek heeft uitgewezen dat er ook inwendige-punt methoden bestaan
waarvan de looptijd enkel afhangt van het formaat van de matrix 𝐴, en dus niet van
de vectoren 𝑏 en 𝑐. In 2003 stelde Monteiro en Tsuchiya de vraag of er een methode
bestaat die allebei deze eigenschappen heeft: zowel schaal-invariant en met looptijd
begrensd met behulp van het formaat van 𝐴. In Hoofdstuk 4 laten we zien dat dit
inderdaad het geval is. We omschrijven een inwendige-punt methode die op schaal-
invariante wijze het primaal-duale centrale pad van een LP-probleem kan volgen
om een oplossing te vinden. De looptijd van onze methode hangt enkel af van de
matrix 𝐴.

We introduceren een nieuwe maat om te meten hoe “gebalanceerd” de matrix 𝐴
is. We geven een methode om deze gebalanceerdheid bij benadering uit te rekenen,
en begrenzen de looptijd van onze inwendige-punt methode met behulp van deze
gebalanceerdheid.

6.3 Snijvlakmethode

Voor LP-problemen mogen we ervan uitgaan dat alle randvoorwaarden op voorhand
bekend zijn. In Hoofdstuk 5 laten we deze aanname los. In plaats van een lijst met alle
randvoorwaarden, mogen we nu vragen stellen aan een “orakel”. We leggen dit orakel
telkens een punt 𝑥 ∈ R𝑑 voor, en het orakel laat weten of dit punt in het toegestane
gebied ligt. Als het punt niet toegestaan is, dan geeft het orakel daarvoor een “reden”:
we krijgen een lineaire ongelijkheid die geldig is voor het hele toegestane gebied maar
ongeldig is voor ons voorgestelde punt 𝑥.

Algoritmes voor optimalisatie in dit orakel-model worden snijvlakmethoden ge-
noemd, omdat elke nieuwe lineaire ongelijkheid punten “afsnijd” van het toegestane
gebied. In Hoofdstuk 5 omschrijven we een nieuwe snijvlakmethode. Onze methode
geeft zowel boven- als ondergrenzen op de waarde van het optimalisatieprobleem, en
de twee grenzen bewegen bewijsbaar snel naar elkaar toe.

Ook doen we ook enkele experimenten met verschillende optimalisatieproblemen.
Vergeleken met drie bestaande snijvlakmethoden, heeft ons algoritme maar weinig
vragen aan het orakel nodig om een toegestane oplossing met goede waarde te vinden.
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